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ABSTRACT

Despite many proposed algorithms to provide robustness to deep learning (DL) models, DL models
remain susceptible to adversarial attacks. We hypothesize that the adversarial vulnerability of DL models
stems from two factors. The first factor is data sparsity which is that in the high dimensional input data
space, there exist large regions outside the support of the data distribution. The second factor is the exis-
tence of many redundant parameters in the DL models. Owing to these factors, different models are able
to come up with different decision boundaries with comparably high prediction accuracy. The appear-
ance of the decision boundaries in the space outside the support of the data distribution does not affect
the prediction accuracy of the model. However, it makes an important difference in the adversarial
robustness of the model. We hypothesize that the ideal decision boundary is as far as possible from
the support of the data distribution. In this paper, we develop a training framework to observe if DL mod-
els are able to learn such a decision boundary spanning the space around the class distributions further
from the data points themselves. Semi-supervised learning was deployed during training by leveraging
unlabeled data generated in the space outside the support of the data distribution. We measured adver-
sarial robustness of the models trained using this training framework against well-known adversarial
attacks and by using robustness metrics. We found that models trained using our framework, as well
as other regularization methods and adversarial training support our hypothesis of data sparsity and that
models trained with these methods learn to have decision boundaries more similar to the aforemen-
tioned ideal decision boundary. We show that the unlabeled data generated by noise in our framework
is almost as effective on adversarial robustness as unlabeled data sourced from existing datasets or gen-
erated by synthesis algorithms. The code for our training framework is available online.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

original input [4]. In a white-box setup where the adversary has
access to weight parameters of the DL model, different attack algo-

Deep learning (DL) models have achieved unprecedented accu-
racy for many visual recognition [1], speech recognition [2], and
natural language processing tasks [3]. As DL models find their
way to real-world applications, an important vulnerability in them
was brought to light by the introduction of adversarial examples,
generated by applying human imperceptible perturbations to the
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rithms such as Fast Gradient Sign Method (FGSM) [5], Projected
Gradient Descent (PGD) [6], and DeepFool [7] already exist. Adver-
sarial training [5] is currently one of the most effective approaches
to improve robustness. Efforts to explain the adversarial vulnera-
bility of DL models suggest that correct classification only occurs
on a thin manifold and most of the high dimensional input data
space consists of adversarial examples [5]. We hypothesize that
two factors play important roles in adversarial vulnerability of
DL models. The first factor is that a large portion of the input data
space lies outside the support of the data distributions, i.e. there
exists no training data points in a large portion of the input data
space. As a result, the shape of the SoftMax score surfaces learbed
by DL models is not known in regions outside the support of the
data distribution. The second factor is that DL models have many
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redundant parameters that allow the models to learn different pos-
sible decision boundaries, especially outside the support of the
input data distribution. These different decision boundaries may
have similar prediction accuracy, but they may show major differ-
ences when it comes to adversarial robustness. We hypothesize
that an ideal SoftMax score surface is smooth and its decision
boundary will stay as far from the support of each class distribu-
tion as possible.

Our hypothesis about the existence of large factions in data
space without training data is similar to that in the ongoing
independent efforts on Open Set Recognition (OSR) [8], whose
objective is to train models that can identify data points from
seen classes in the training data or Known Known Classes (KKCs)
accurately, while rejecting data points from unseen classes or
Unknown Unknown Classes (UUCs) that are passed into the
model during testing. In these algorithms, it is assumed that
UUCs are located in a subspace far from KKCs in the high dimen-
sional input data space and the model is trained to have decision
boundaries that bind the support of each KKC distribution tightly
in order to reserve the space outside the support of the data dis-
tribution for UUCs.

Semi-supervised learning (SSL) has been widely used to train
models with higher accuracy when limited labeled data is avail-
able. SSL has also recently been deployed to train adversarially
robust DL models by regularizing DL models using unlabeled
datasets. These methods generate unlabeled data points using
Gaussian noise and synthesis algorithms or source data points
from existing datasets. The idea is that the unlabeled data provides
more points in the high dimensional input data space at which the
gradient of the SoftMax score surface can be regularized. In this
paper, we also leverage unlabeled data, carefully generated to
cover a large area around the support of the data distributions to
remove the first factor in our hypothesis that is data sparsity.
We then use the unlabeled data and a training framework
equipped with regularization to train models with decision bound-
aries similar to the described ideal decision boundary. We will
analyse if models trained to have decision boundaries similar to
the ideal decision boundary described above are more robust to
adversarial attacks.

Our contributions are listed as follows:

1. We hypothesize that adversarial vulnerability of DL models for
high dimensional input data stems from two factors. The first
factor is data sparsity in the high dimensional input data space.
The second factor is that DL models with a large number of
parameters tend to learn many different SoftMax score surfaces
with decision boundaries that get close to the class distribu-
tions in the input data space. We develop a training framework
for DL models to learn SoftMax score surfaces similar to what
we believe is the ideal SoftMax score surface for DL models.
We define the ideal SoftMax score surface as the SoftMax score
surface that is smooth and its decision boundary lies far from
the support of each class distribution. The training framework
generates unlabeled data in a novel way to alleviate data spar-
sity in a large area around the labeled dataset in the high
dimensional input data space. Using the generated unlabeled
data and a regularization term, the training framework encour-
ages DL models to learn SoftMax score surfaces similar to the
ideal SoftMax score surface. We show that the relative distance
of the decision boundary for DL models trained with our train-
ing framework using Jacobian regularizer is larger compared to
DL models trained with the Jacobian regularizer alone for
MNIST, CIFAR10 and Imagenette datasets.

2. We show that our training framework is able to train DL models
with SoftMax score surfaces similar to the ideal SoftMax score
surface for a 2D points dataset.
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3. We show that unlabeled data generated by Gaussian noise gen-
erated by our training framework is almost as effective as unla-
beled data generated by more costly and complex synthesis
algorithms or those sourced from other existing datasets.

4. We compare adversarial robustness of DL models trained using
Gaussian-generated unlabeled data and the Jacobian regularizer
with intermediate noise injection and the Jacobian regularizer
and show that injecting noise at the intermediate layers of
the network following the same strategy proposed in our train-
ing framework improves adversarial robustness of models.

5. In an OSR setting, we show that models trained with our train-
ing framework are consistently less confident in predicting data
points from unknown classes which is the desirable behaviour.

There are a number of works that utilize unlabeled or labeled data
generated by Gaussian noise for training adversarially robust mod-
els. These include the work by Zhang et al. [9] where instead of gen-
erating adversarial examples using the direction from the data point
to the decision boundary, perturbations are generated for adversar-
ial training using inter-sample relationships in the input data batch.
Also, in the works by Chernyak et al. [10], Zantedeschi et al. [11] and
Li et al. [12] models trained with new data points drawn from a
neighborhood around each training example with the same label
as the original data point are found to be more robust to adversarial
attacks. None of these methods ensure that the generated data dis-
tribution covers a large area around the support of the labeled data
distribution. However, they do support our hypothesis that data
sparsity is one of the factors that makes DL models prone to adver-
sarial attacks.In summary, in this paper we first propose two
hypotheses: 1) there exists data sparsity in high dimensional input
data space. As a result, the shape of the SoftMax score surface
learned by DL models is unknown in the area outside the support
of the input data distribution and 2) the large number of parameters
in DL models allows DL models to learn many possible SoftMax
score surfaces in the area outside the support of the input data dis-
tribution. Our method is related to our hypothesis by generating
unlabeled data that alleviates data sparsity in the high-
dimensional input data space and training DL models to learn a
unique SoftMax score surface that we believe is an ideal SoftMax
score surface for DL models. Training DL models to learn the ideal
SoftMax score surface was performed using the generated unla-
beled data and a regularization term.

We show that a model trained with the generated unlabeled
data and a regularization term can learn a SoftMax score surface
similar to the ideal SoftMax score surface for a 2D points dataset.
We show that the relative distance of the decision boundary of
models trained with our training framework increased compared
to normal training and is on par with the relative distance of the
decision boundary of models trained with other regularization
methods. We also show that the prediction confidence of models
on UUC data points is consistently lower for models trained with
our training framework compared to models trained without reg-
ularization implying that the SoftMax score surface at the location
of UUC distributions in the high dimensional input data space is
flattened. These results imply that the SoftMax score surface of
the trained models with our training framework is similar to the
ideal SoftMax score surface.

2. Related Work

Over the last few years, many algorithms have been proposed to
improve adversarial robustness of DL models.A number of such
algorithms propose to detect adversarial attacks. The work by Gos-
wami et al. [13] is an example of such algorithms in which attacks
are detected by observing the response of hidden layers in the net-



M. Paknezhad, C.P. NGO, A.A. Winarto et al.

work or the work by Grosse et al. [14]| where adversarial examples
are detected by taking into account that they are drawn from a dif-
ferent distribution as the distribution of the original data. There are
many other proposed algorithms that detect adversarial examples
such as the works by Peck et al. [15], Gong et al. [16], Feinman et al.
[17], Das et al. [18], Liang et al. [19] and Lu et al. [20]. Another
group of methods aim to cancel the effect of adversarial perturba-
tions on the model’s output. The work by Xie et al. [21] is a good
example of such methods where the authors perform low-level
image transformations such as random resizing and random pad-
ding on the input image before passing the image to the classifica-
tion model to destroy the structure of adversarial perturbations.
The work by Liao et al. [22] proposes a denoiser based on the
observation that while the difference between the clean and adver-
sarial sample is small, this difference is large in the high-level rep-
resentation of the two samples in the classifier. The proposed
denoiser is trained to suppress the influence of adversarial pertur-
bations by minimizing the distance between the high-level repre-
sentation of the two images. In another work, Xie et al. [23]
propose a feature denoising network that when combined with
adversarial training significantly improves adversarial robustness
of the trained model. Methods that are built upon adversarial train-
ing, such as the work by Baytas et al. [24] are another group of
algorithms. In the work by Baytas et al. [24] adversarial training
is done using perturbations that are automatically generated by a
generator network or in the work by Trameér et al. [25] perturba-
tions are transferred from other models. Qin etl al. [26] perform
adversarial training while treating correctly-classified and misclas-
sified examples differently. Apart from these methods, there are
other approaches to train robust models such as the work by Thea-
garajan et al. [27] where adversarial-free zones around the input
data distribution of the model are found and adversarial examples
are projected to the adversarial-free zones. In the work by Wong
et al. [28], a convex outer bound is constructed by applying
norm-bounded perturbations on the training data. The authors
compute and optimize over the worst case loss within this convex
outer bound to train a model that is provably robust to any norm-
bounded adversarial attacks. Being computationally heavy, the
work by Wong et al. [28] was further modified to scale to larger
networks [29,30]. Dapello et al. [31] increase adversarial robust-
ness of DL models by replacing the first few layers of the network
with neural layers with fixed weights that simulate primary visual
cortex. Gittings et al. [32] propose a defence mechanism against
adversarial patch attacks which leverages GANs to come up with
effective adversarial patches and fine tunes the model to build resi-
lience against adversarial patch attacks. Many other algorithms
have been proposed to address adversarial vulnerability of DL
models such as the works by Shaham et al. [33], Li et al. [34], Yang
et al. [35], Guo et al. [36], Pang et al. [37], Zhou et al. [38], Cohen
et al. [39], Goel et al. [40], Rusak et al. [41], and Liu and Sun [42].
A large number of proposed methods for training adversarially
robust models are categorized as regularization methods where
an additional loss term is specified for model training. Such regu-
larization terms in the literature are designed to achieve different
objectives. One objective is to smooth the decision surface of mod-
els such as the work by Simon-Gabriel et al. [43], Xu et al. [44] and
Roth et al. [45]. Another objective is to keep the decision boundary
away from the training data points such as the work by Singla and
Feizi [46], Glimer et al. [47] and Zhang et al. [48]. In the following,
we will provide a brief review of related literature on regulariza-
tion approaches as well as SSL algorithms.

2.1. Regularization Methods

Existing algorithms train DL models with decision boundaries
that stay far from training data points, have smooth gradients or
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small curvatures[49]. Yan et al. [50] incorporated a DeepFool attack
module in training to maximize the distance between the decision
boundary of the trained model and the training data points. They
added the regularization term A3, R(—[|Ay,|I,/[1%k[|,) with a weight
parameter 4 to the natural error in the loss function and jointly
optimized the model over the loss function during training. The
regularization term is a scale of A,, which is the minimum adver-
sarial perturbation found by DeepFool for an input image x,. R is a
monotonically increasing function. Zhang et al. [48] also proposed
a regularization term to increase the distance to the decision
boundary by adding the boundary error
MaXy,eBx.) P (fo(Xk)f o (X/k) /) as a regularization term. B(x, €) repre-
sents the neighborhood of input x,, and ¢ is a surrogate of 0-1 loss
for binary classification. The regularization term minimizes the dif-
ference between the prediction for the natural image f,(x;) and the
adversarial example f,(x/¢). Jakubovitz and Giryes [51] added the

2
regularization term /1\/ ZLZ}L]ZL (&z}”(x,&) which is the

Euclidean norm of the network’s Jacobian matrix evaluated on
input x, where f,(x) = SoftMax{z" (x,)}. The proposed regulariza-
tion is applied during extended training of the model after normal
training where d is the dimension of the input x,,n is the dimen-
sion of the output of f,(x,), and N is the number of data points in
the dataset. The reason for choosing a Jacobian matrix is said to
be that Jacobian is related to the curvature of the model’s decision
boundary and the distance to the closest adversarial example.
Moosavi et al. [49] provide theoretical evidence that a small curva-
ture in the loss function increases the robustness of the model.
They propose a regularization term that reduces the curvature of
the loss function by minimizing eigen values for the Hessian
matrix with respect to the inputs: Ahle| |VI(xi, hz) — VI(x,)||>. Here,
h is the discretization step over z ~ N(0,Id). Ross and Doshi-velez
[52] use adversarial training and distillation [53] as a regulariza-
tion mechanism and use the regularization term

AL S (9%2}1:1 — Yy logf(,(xk)j)2 which encourages that the
KL divergence between the predictions and the labels does not
change significantly if the input changes slightly [54].Carmon
et al. [55] use the same regularization term proposed by Zhang
et al. [48] except that they deploy unlabeled samples in addition
to labeled samples during training

2.2. Semi-Supervised Learning

SSL algorithms have also been used for consistency training
which refers to all the algorithms that regularize model predictions
to be resilient against noise injections into input examples or hid-
den states. Xie et al. [56] substitute noise injection methods with
advanced data augmentation methods to generate unlabeled data
and use it together with labeled data for consistency training.
Verma et al. [57] proposes training the network with new mini-
batches generated by randomly mixing two minibatches in an
intermediate layer of the network and giving the new minibatch
a soft label. Miyato et al. [58] extend adversarial training [5] to
use both labeled and unlabeled data points for regularizing the
conditional label distribution around each input data point. Zhai
et al. [59] utilize SSL for adversarially robust generalization by
using portions of the MNIST and CIFAR10 dataset as unlabeled
data. The authors train DL models to be accurate on labeled data
and robust on both labeled and unlabeled data. Uesato et al. [60]
utilize the 80 Million Tiny Images dataset as unlabeled data for
the labeled CIFAR10 dataset, which led to a 4% improvement in
the robust accuracy of the trained model. Robust accuracy is
defined as the accuracy of the model in predicting the correct
classes for adversarially perturbed images. The authors also uti-
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lized portions of CIFAR10 and SVHN as unlabeled data points for
these datasets to improve the adversarial robustness of trained
models. They showed that models trained with smaller labeled
datasets, with most labels for samples in the CIFAR10 and SVHN
dataset removed are more adversarially robust. Najafi et al. [61]
removed labels from portions of their training dataset, assigned
soft labels to the unlabeled data according to an adversarial loss,
and used these soft-labeled images with the labeled images for
training. Carmon et al.[55] also augmented CIFAR10 with 500 K
unlabeled images from the 80 Million Tiny Images dataset. On
SVHN, they used the dataset’s own extra training set as unlabeled
images. In these studies except for noise injection methods, unla-
beled data was captured in a similar expensive manner as labeled
data.

3. Method

This section presents our developed framework for training DL
models to learn decision boundaries similar to our hypothesized
ideal decision boundary. We will first present the overall objective.
Later, we introduce the notations used in the paper. Finally, the
data generation and model training steps are described.

3.1. The Ideal Decision Boundary

Fig. 1 shows a binary classification problem for a 2D points
dataset. Also shown is the schematic representation of the SoftMax
score surface for two trained DL models on the 2D points dataset
using contour plots. Fig. 1 (Left) shows the SoftMax values for a
DL model with a SoftMax score surface that is hypothesized to be
non-ideal. Due to the short distance of its decision boundary to cer-
tain data points, an attack model will be able to find small pertur-
bations such as Vx; and Vx, for data points (e.g. x; and x,
respectively) that will make the perturbed data points cross the
decision boundary and consequently be assigned to the other class
label. In contrast, the SoftMax score surface shown in Fig. 1 (Right)
is hypothesized to be more robust against adversarial attacks. The
SoftMax score surface spans outwards in the space around the data
distribution and gradually changes from zero to one from one class
to the other. This is desirable as it keeps the decision boundary as
far as possible from both class distributions, making it more diffi-
cult for adversarial attacks to fool the model via small
perturbations.

Decision boundary

can be anywhere in

the non-dense
regions

Non-idea SoftMax score surface
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In Fig. 1 (Left), the SoftMax score surface learned by the model
is very steep around the decision boundary and the decision
boundary gets close to the data points. The hypothesized ideal
SoftMax score surface (Fig. 1) has two distinct characteristics:

1. The first characteristic is the smooth gradient of the SoftMax
score surface. The advantage of SoftMax score surfaces with
smooth gradients has been studied and is well-known [51,52].

2. The other characteristic is spreading of the SoftMax scores in
the space away from the class distributions. This characteristic
is very beneficial as will be explained in the following
paragraphs.

A SoftMax score surface that spreads outward in the space
around the data distribution results in a decision boundary that
stays far from all class distributions. Consequently, it will be more
difficult for the attack model to find a small perturbation that
changes the predicted label for the clean data point. Another
advantage of having such a SoftMax score surface is in the beha-
viour of the model when it receives a data point that does not
belong to any of the classes the model was trained on or unknown
unknown classes (UUCs). As an example, consider the model with
the non-ideal SoftMax score surface in Fig. 1 (Left). If during testing
the model receives a data point from a new class that it has not
been trained on, the distribution from which that data point is
sampled from may be far from the data distribution the model is
trained on. If the data distribution for the unseen class is at the
right side of the decision boundary in Fig. 1 (Left), the model will
label the new data point with the label of the class distribution
on the right with a very high confidence (e.g > 90%), whereas the
proposed ideal SoftMax score surface in Fig. 1 (Right) assigns label
of the class distribution on the right with a lower confidence (e.g.
60%). To train a DL model to learn such an ideal SoftMax score sur-
face with an ideal decision boundary we sample unlabeled data
points in a large neighborhood of the labeled data distribution so
that the generated unlabeled dataset covers a large faction of the
high dimensional input data space outside the support of the data
distribution and between class distributions. We use a regulariza-
tion term to to encourage small gradients on the SoftMax score
surface of the DL model at the location of data points in the labeled
and unlabeled datasets in the high dimensiontal input data space.
Our experiments show that the learned SoftMax score surface by
DL models using our training framework looks similar to what
we define as the ideal SoftMax score surface for DL models.

Decision boundary is
restricted to midway
between the two

dense regions

Idea SoftMax score surface

Fig. 1. (Left) shows a SoftMax score surface that a DL model can learn for classifying a 2D point dataset. A model with such a SoftMax score surface is very susceptible to
adversarial attacks since the decision boundary gets close to the data distribution and small perturbations such as Vx, and Vx, in data points (e.g. x, and x;) can make the data
points cross the decision boundary. (Right) shows what we hypothesize to be the ideal SoftMax score surface which can improve the adversarial robustness of a model. In
contrast to the left figure, the decision boundary for this surface is smooth and stays far away from both class distributions. The reader is referred to the online version of this

paper for the color representation of this figure.
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3.2. Notations

Consider a c-class classification problem for learning a predictor
f, with parameters 0 to map inputs x; € X C R" to labels
yi € Y={1,---c} where n is the dimension of the input data space.
In this case, f, will be of the form: f,(x) = arg max,.yp,(y|x). The
labeled dataset is specified by D= {(x,y)|xieX,y;eY,i=1,
---,N;},y; is the ground-truth label for x;, and N, is the number of
labeled data points. The generated unlabeled dataset is specified
byU = {uj; eR"i=1,---,N,j=1,---,N,} where u; is the j” unla-
beled data point generated using the i" labeled data point, and N,
is the number of generated unlabeled data points using one labeled
data point. No ground-truth label is known for the unlabeled data
points. The unlabeled data points are sampled from the same data
space as the labeled data points, hence u;; € R". We concatenate
the sets X and U and define ¥ = {y,|ly,eXulUk=1, -,
N, + N, x N, }. Hence, a new dataset is generated:

D _ { (lpkvyk) if l//k eX
new l//k i wk .

In the next section, we explain how unlabeled data is generated.

(1)

3.3. Generating Unlabeled Data Points

Utilizing unlabeled data points to train adversarially robust
neural networks is not a new idea as explained in the Section 2.2.
In many domains such as cancer research, obtaining even an uncu-
rated dataset of images can be expensive and time consuming.
Preparation and scanning of a single sample of cancer tissue can
cost hundreds to thousands of dollars. Also, there is no guarantee
that the acquired dataset will cover a large portion of the data
space around the support of the labeled data distribution. In our
training framework, we generate unlabeled data points very
cheaply from the labeled dataset using simple additive Gaussian
noise. Unlabeled data points were generated from the labeled data
points by adding noise to the labeled data points sampled from an
isotropic Gaussian distribution.The novelty in our training frame-
work is in sampling Gaussian noise from a suitable Gaussian distri-
bution that allows the generated unlabeled dataset to cover a large
neighborhood around the labeled data distribution. The suitable
Gaussian distribution was found by measuring the spread of the
labeled data distribution in the input data space which was mea-
sured as the mean of the Euclidean distance between pairs of data
points () in the labeled dataset. In other words, ;. is a param-
eter that we measure only once from the input labeled dataset.
From the input labeled dataset X with N, labeled data points, pairs
of data points are randomly selected (x;,x; ~ X) and the Euclidean
distance between each pair is measured. The mean value of these
measurements is defined as p,,,. We then use multiples of ft,,,
as the standard deviation for the Gaussian distribution from which
noise is sampled to generate unlabeled data from each labeled data
point by adding the sampled noise to the labeled data point. Gen-
erating unlabeled data in this way increases the likelihood that the
unlabeled data covers a large area around the original labeled data
distribution. The standard deviation of the Gaussian distribution
was specified as k-times the mean value. The Gaussian distribution
was uniform in all input data dimensions. More precisely, the co-
variance matrix could be represented by the simplified matrix
a*I with ¢ equal to k x .. For each labeled data point x;, a series
of N, unlabeled data points {u;jlj = 1,---,N,} were sampled from
the area around the labeled data point in R". We set k = 3 in our
experiments in the paper. The effect of the value of k on the robust-
ness of the DL models is analysed in Appendix E of the Supplemen-
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tary Materials. Unlabeled data points were generated once only for
the labeled dataset.

Thus, the unlabeled dataset is generated to cover a large data
space outside the support of the data distribution. We believe
our generated unlabeled data will support not only the adversarial
attack directions but many other directions in the input data space.
Using this unlabeled dataset together with the labeled dataset, the
DL model is trained to have a smooth SoftMax score surface using
regularization. Using the generated unlabeled data and a training
framework equipped with regularization, we experimentally show
that models learn a decision boundary that is away from the sup-
port of each class distribution. We will show in Section 4.4 that
using Gaussian noise to generate unlabeled data instead of collect-
ing more data or using synthesis algorithms is almost as useful to
achieve a smooth SoftMax score surface with a decision boundary
away from the class distributionssimilar to the ideal decision
boundary explained before. In the next section, we explain what
regularization technique was deployed to train the model to have
a smooth SoftMax score surface.

3.4. Training the CNN

A strong regularization term for training a model with a smooth
SoftMax score surface is the Euclidean norm of the network’s Jaco-
bian matrix evaluated on each input data point as proposed by
Jakubovitz et al. [51] and introduced in Section 2. We believe, reg-
ularization algorithms that impose a boundary condition such as
TRADES [48] may not be as effective in training models with the
aforementioned ideal decision boundary as these algorithms push
the decision boundary away only in the e-neighborhood of labeled
data points. Minimizing the Euclidean norm of the Jacobian matrix
for each input data point will make the SoftMax score surface
smooth in each input dimension at that data point. Applying this
regularization term not only on the labeled data points but also
on the unlabeled data points will smoothen the SoftMax score sur-
face even outside the support of the data distribution which aligns
well with our objective. We believe this regularization term and
the generated unlabeled data points which cover a large fraction
of the high dimensional input data space around the original data
distribution will train models similar to the aforementioned ideal
decision boundary.

The disadvantage of this regularization term is that training
models using this regularization term is very time-consuming.
According to the mean value theorem, there exists two input data
points x1,X; € X and X' = tx; + (1 — t)x,,0 < t < 1 for which:

o) £l S5 1 ?
k=1

[1X1 — Xx2[I;

where [|.||, is the Euclidean norm function. The Jacobian regulariza-
tion minimizes the term at the right side of Eq. 2. To decrease the
training runtime in order to test our hypothesis rigorously, we
implemented a more naive version of this regularization term by
instead minimizing the term at the left side of the Eq. 2 which is
the slope of the SoftMax score surface between two input data
points.Fig. 2 shows a schematic representation of the training
framework for a DL model for the input dataset shown on the left.
The final SoftMax score surface of the trained model using this
training framework is also shown at the bottom of the figure. Dur-
ing the training process, a data point, ,, was selected randomly
from the new dataset Dy, (Eq. 1). Similar to the way unlabeled data
points were generated, a specific number of neighbor data points,
N, (similar to N, for unlabeled data points), were generated for
the selected data point by adding N, noises sampled from an isotro-
pic Gaussian distribution with 10-times smaller standard deviation
than the standard deviation for generating unlabeled data. Neighbor
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Fig. 2. Figure shows the pipeline for training a DL model for the input dataset shown on the left. For the training dataset an unlabeled dataset is generated. During training a
data point is sampled from either the labeled or unlabeled dataset. The local SoftMax score surface around the sampled data point and the generated neighbors for that data
point is made smooth using the loss function in Eq. 5. The final ideal SoftMax score surface of the model for the input dataset is shown at the bottom of the figure..

Yo (Ym| m =1, .., Ny} »

W o0, (o). | m=1,.., M)

Fig. 3. The input training batch to the CNN model. In each batch, a data point, y,,
together with N, generated neighbor data points, {y; ,|m = 1,---,N,}, are fed to the
model. The model is trained by minimising the loss function 5.

data points were generated on the fly for regularization purposes.
Hence, they were not part of the new dataset. These neighbor data
points are denoted by {y, ,/m=1,---,N,}. The selected data point
was then fed into the model together with the generated neighbors,
as shown in Fig. 3 as a mini-batch.

For the selected data point , and a single neighbor data point
Yi.m» Which was generated by adding small noise to v, the model
with a smooth SoftMax score surface would ideally output similar
predictions, denoted by f,(y,) and f,(,,), respectively. This
requirement was enforced by smoothing the slope of the SoftMax
score surface between the data point , and each of its neighbor
points y, .. This is our naive regularization term, LosSy,, and is
defined as:

o (ien)—Fo (i)l
LoSSreg (4, 0) Z Woem=villa (3)

vlpk GXUUv{lPk.mW = 1~,"'7Nb}

To ensure that the model learns to correctly classify the labeled
data points {y, € X}, a supervised loss function, Loss, in our case
cross entropy shown as H, was considered to compare the pre-
dicted label, f,(y,) for the labeled data point with the ground-
truth label y,.

LosSce (Wi, Yis 0) = HYio fo (W), Vi € X (4)

The overall loss function for the CNN model is a weighted com-
bination of the supervised and the regularization loss functions,
defined as below. The cross entropy loss is measured only for the
data points that came from the labeled dataset X and is zero
otherwise.

Loss =Y "LoSSce (g, Y, 0) + 4 % L0OSSreg (11, 0), (5)

X YeXuU

where / is a hyperparameter. We use this loss function for training
DL models in the coming experiments to test our hypotheses. More
details on the size of the isometric Gaussian distributions that are
used to sample noise and generate unlabeled data points and neigh-
bor data points are provided in Appendix B of the Supplementary
Materials. In the next section, we describe our experiment design.
We assess our hypothesis using the proposed training framework
and show the conclusions that were drawn from these experiments.

4. Experiments

To test our hypothesis about the proposed ideal decision
boundary, different datasets comprising of both 2D points and
image datasets including MNIST [62], CIFAR10 [63], and Ima-
genette which is a subset of the well-known ImageNet ILSVRC
2012 dataset [64] were used. The following describes the experi-
ments carried out on each dataset.

4.1. Effect of the Training Framework on the SoftMax Score Surface for
the 2D Points Dataset

This experiment was carried out to examine the feasibility of
training a DL model to learn a SoftMax score surface which stays
far from each class distribution similar to the example shown in
Fig. 1 (right). A simple neural network consisting of 4 fully-
connected layers with TanH activation functions was trained to
perform binary classification on the 2D points dataset shown in
Fig. 4 (a). The unlabeled data points generated for this dataset
are shown in gray in Fig. 4 (b). Fig. 4 (c) shows the SoftMax score
surface the model learns without utilizing regularization and unla-
beled data. We also show the learned SoftMax score surface by the
Jacobian Regularizer which does not use unlabeled data in Fig. 4
(d). Fig. 4 (e) shows the SoftMax score surface learned by the model
using the naive regularization term and unlabeled data. These
results show that the decision boundary learned by the model with
normal training gets close to the support of the class distributions
at certain locations and the SoftMax score surface is considerably
steep around the decision boundary. The SoftMax score surface
learned by the model trained by the Jacobian regularization term
is slightly smoother than that of the model with normal training.
However, there are certain locations outside the support of the
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Fig. 4. (a) our 2D points dataset ({X, Y}). (b) generated unlabeled dataset for the labeled dataset is shown in gray (U). (c) the SoftMax score surface learned by a model without
regularization and unlabeled data, (d) the SoftMax score surface learned by the Jacobian Regularization term [51] without unlabeled data, (e) the SoftMax score surface
learned by our naive regularization term using the unlabeled dataset. The reader is referred to the online version of this paper for the color representation of this figure.

data distribution where the SoftMax score surface is steep. The
model trained using the naive regularizer and unlabeled data, how-
ever, keeps the decision boundary away, far from both class distri-
butions and the SoftMax score surface stays smooth outside the
support of the data distribution. These results show that unlabeled
data helps the model to learn a SoftMax score surface similar to the
ideal SoftMax score surface described despite the fact that a
weaker regularization term was used compared to the stronger
Jacobian regularizer. More examples of different 2D datasets are
provided in Appendix A of the Supplementary Materials.

4.2. Numerical Results on the Distance of Decision Boundary from the
Data Distribution

MNIST Dataset: The MNIST dataset consists of 60,000 mono-
chrome images of handwritten digits in the training set. It has 10
classes which correspond to the digits O to 9 and an equal number
of images per class. The images were resized to 32, rescaled to the
range [0, 1] and z-score standardized with mean and standard devi-
ation of the training dataset. The LeNet [62] network architecture
and Sigmoid activation function were used for all experiments on
the MNIST dataset. Details of the training hyperparameters are
given in Appendix B of our Supplementary Materials. Five models
were trained to perform classification on the MNIST dataset using
our proposed loss function (Eq. 5). Different values of 1 were tested
and the model’s loss curve was checked for each 4 value. The high-
est A value that did not decrease the models’ validation accuracy by
more than 5% was chosen. We show adversarial robustness of the
trained models with same number of models trained using Jaco-
bian Regularization [51], Input Gradient Regularization [52],
TRADES [48] and adversarial training. Table 1 shows the results

Table 1

obtained using Jacobian Regularization [51], Input Gradient Regu-
larization [52], TRADES [48], adversarial training and our naive reg-
ularizer with unlabeled data. The p,, value defined as

Pado(fo) = Sex i [nilz measures the average relative distance

between data points and the decision boundary and was intro-
duced by Moosavi et al. [7] as a measure of robustness of models
against adversarial attacks. Our analysis shows that the pqq, values
were relatively high for the model trained with the naive regular-
izer and unlabeled data, and when combined with adversarial
training compared to other regularization methods. Jacobian Regu-
larization [51], Input Gradient Regularization [52], and adversarial
training also show larger pqq, value compared to models trained
with no defence mechanism. We have also reported the test accu-
racy of each model in the same table. We define test accuracy as
the prediction accuracy of the model on the clean test dataset.
The test accuracy achieved by all the models is very close to the
test accuracy for models with no defense. Finally, we have also
reported the average robust accuracy of the trained DL models
against FGSM and PGD attacks for epsilon value 0.7. This epsilon
value is the largest epsilon value that DL models trained on MNIST
dataset are evaluated for in the literature. We put ’-’" in the table if
we could not find these measurements for those methods which
we have taken from literature. Models trained with smaller values
than the chosen Z value had smaller robust accuracy while models
trained with larger values than the chosen 4 value had smaller test
accuracy.

CIFAR10 Dataset: The CIFAR10 dataset contains color images of
10 natural image classes with equal numbers of images per class.
CIFAR10 images were also rescaled to the range [0, 1] and z-score
standardized using the mean and standard deviation of the
training dataset and augmentation methods were applied during

Column p,gy Shows measured p.qgy Values using DeepFool attack for the DL models trained on the MNIST dataset. Test accuracy is also shown for each model. Test accuracy is
defined as prediction accuracy of the model on the clean test dataset. Average robust accuracy of the models is also shown against FGSM [5] and PGD [6] attacks using epsilon

value 0.7.
Defence method Padv Test accuracy Robust accuracy Robust accuracy
(x1072) (%) (FGSM, € = 0.7) (PGD, € =0.7)

Literature No defence 20.67 99.08 - -
Adversarial training [5] 22.38 99.03 - -
Input Gradient [52] 2343 99.25 - -
Input Gradient [52] & 23.49 98.88 - -
Adversarial training [5]
Jacobian [51] 34.24 98.44 - -
Jacobian [51] & 36.29 98.00 - -
Adversarial training [5]
TRADES [48] 25.82 99.21 86.13 + 0.97 54.90 F 3.03
TRADES [48] & 33.54 99.17 90.83 ¥ 0.33 67.09 ¥ 0.54
Adversarial training [5]

Ours No defence 20.30 98.29 41.40 £3.21 0.02 ¥ 0.01
Adversarial training [5] 61.84 98.66 89.50 F 3.30 43.82  24.08
Naive regularizer & Unlabeled data 46.29 98.69 62.62 ¥ 2.11 411 ¥ 1.07
Naive regularizer, Unlabeled data & 51.20 98.80 93.62 T+ 1.17 55.66 = 1.87

Adversarial training [5]
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Column p,4y Shows measured p,qy Values using DeepFool attack for the models trained on CIFAR10 dataset. Test accuracy is also shown for each model. Test accuracy is defined as
prediction accuracy of the model on the clean test dataset. Average robust accuracy of the models is also shown against FGSM [5] and PGD [6] attacks using epsilon value 15.

Defence method Padv Test accuracy Robust accuracy Robust accuracy
(x1072) (%) (FGSM, € = 15) (PGD, € = 15)
Literature No defence 1.21 88.79 - -
Adversarial training [5] 1.23 88.88 - -
Input Gradient [52] 1.43 88.56 - -
Input Gradient [52] & 2.17 88.49 - -
Adversarial training [5]
Jacobian [51] 3.42 89.16 - -
Jacobian [51]& 6.03 88.49 - -
Adversarial training [5]
TRADES [48] 1.44 86.74 16.11 ¥ 0.75 7.74 ¥ 0.28
TRADES [48] & 1.34 87.15 16.78 ¥ 1.30 7.99 ¥ 0.57
Adversarial training [5]
Ours No defence 1.23 91.17 10.61 = 0.39 1.49 = 0.08
Adversarial training [5] 1.27 89.51 80.06 + 1.74 2.30 ¥ 0.89
Naive regularizer & Unlabeled data 3.29 83.96 47.03 ¥ 0.85 43.60 ¥ 0.67
Naive regularizer, Unlabeled data & 4.45 83.50 64.49 ¥ 3.22 58.46 + 2.78

Adversarial training [5]

training. For CIFAR10 dataset, ResNet 9 [65] network architecture
was used with a CELU activation function for all layers. The lambda
value was chosen similarly as for the MNIST dataset. Details of the
training hyperparameters are given in Appendix B of our Supple-
mentary Materials. Five models were trained using the proposed
loss function (Eq. 5), the labeled dataset and the generated unla-
beled dataset. Training and comparison of the results were con-
ducted similar to the MNIST experiments. Table 2 shows the
results obtained using Jacobian Regularization [51], Input Gradient
Regularization [52], TRADES [48] and the naive regularizer with
unlabeled data. The p,q, values achieved for the naive regularizer
and unlabeled data and when combined with adversarial training
are larger compared to models trained with no defense, adversarial
training, Input Gradient Regularization [52] and TRADES [48]. Jaco-
bian regularization and Jacobian Regularization with adversarial
training show larger pq4, values. The test accuracy achieved was
slightly lower using our training framework. We believe the test
accuracy is compromised over achieving a smooth SoftMax surface
outside the support of the data distribution in the high dimen-
sional input data space.Also shown is the average robust accuracy
of the trained DL models against FGSM and PGD attacks for epsilon
value 15. We put -’ in the table if we could not find these measure-
ments for those methods which we have taken from literature.
Imagenette Dataset: Imagenette is a subset of the well-known
ImageNet ILSVRC 2012 dataset [64] with 10 easily classified
classes. Images were rescaled to the range [0, 1] and z-score stan-
dardized using the mean and standard deviation of images in the
training dataset. The XResNet 18 [66] network architecture was
used to train a model to classify Imagenette dataset with MISH

Table 3

activation function. Details of the training hyperparameters are
given in Appendix B of our Supplementary Materials. The training
and attacks performed were similar to those in the experiments for
MNIST and CIFAR10 datasets. Table 3 shows the results obtained
without regularization, with adversarial training, and the naive
regularizer with unlabeled data. Also shown is the results obtained
using Jacobian regularizer [51] and TRADES [48] with adversarial
training. Similar to the previous experiments, our models show
higher p,q, values compared to normal training and TRADEs [48].
When combined with adversarial training, the model shows the
highest pgq, value. The experiments on MNIST, CIFAR10 and Ima-
genette datasets show that a naive regularizer together with unla-
beled data indeed results in models with larger p,q,, which implies
that the distance between data points and decision boundary
increases for the models trained with unlabeled data that supports
a larger area in the high dimensional input data space.We showed
that even a naive regularizer can improve adversarial robustness of
DL models using our generated unlabeled data. We defined and
used a naive regularizer so that it would allow us to run rigorous
experiments to study our hypotheses in section 4.4 to 4.7. Due to
the slow speed of the Jacobian regularizer, we were not able to
use this regularizer to run the experiments in section 4.4 to 4.7
in a reasonable amount of time. However, we experimentally show
Jacobian regularizer’s superiority over our naive regularizer in Sec-
tion 4.3. We believe other regularization techniques such as Input
Gradient Regularization [52] and Jacobian Regularization [51] and
adversarial training are indirectly trying to achieve the ideal deci-
sion boundary explained before. The drawback of these algorithms,
however, is that they do not take advantage of unlabeled data

Column p,4y shows measured p,gy values using DeepFool attack for the models trained on Imagenette dataset. Test accuracy is also shown for each model. Test accuracy is defined
as prediction accuracy of the model on the clean test dataset. Average robust accuracy of the models is also shown against FGSM [5] and PGD [6] attacks using epsilon value 19.

Defence method Padv Test accuracy Robust accuracy Robust accuracy
(x1072) (%) (FGSM, € =19, %) (PGD, € =19, %)
Literature Jacobian [51] 2.49 85.60 23.67 ¥ 0.68 8.54 + 0.48
Jacobian [51] & 4.39 87.18 42.71 ¥ 047 28.21 ¥ 0.36
Adversarial training [5]
TRADES [48] 1.20 85.97 7.02 ¥ 0.23 0.08 ¥ 0.01
TRADES [48] & 415 82.88 56.08 F 0.40 53.18 £ 0.39
Adversarial training [5]
Ours No defence 0.941 87.18 6.48 = 0.37 0.01 + 0.00
Adversarial training [5] 4.82 83.06 69.86 + 0.45 67.22 ¥ 0.52
Naive regularizer & Unlabeled data 2.21 84.92 12.69 ¥ 0.79 0.55 ¥ 0.09
Naive regularizer, Unlabeled data & 4.96 82.44 69.59 F 0.39 67.68 + 0.37

Adversarial training [5]
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during training. In Section 4.3, we conduct experiments to analyse
how models trained with Jacobian regularization and unlabeled
data perform in comparison to Jacobian regularization alone and
the naive regularizer with unlabeled data. In other words, does
unlabeled data help the models trained with Jacobian regulariza-
tion perform even better. In the next section, we show the results
of these experiments.

4.3. Comparison between Our Regularization and the Jacobian
Regularization

As mentioned before, applying Jacobian regularization during
the training process is very time consuming. However, this regular-
izer is stronger than our naive regularization term. For the purpose
of confirming this point, we ran multiple experiments and com-
pared the robust accuracy of models trained with the Jacobian reg-
ularization term and the naive regularization term. Although
Jakubovitz and Giryes [51] applied Jacobian regularization as a
post-processing step after training the model has finished, we
applied the Jacobian regularizer to the model during the training
process similar to our training framework to ensure a fair compar-
ison. We compared the robustness of models trained with the
naive regulaizer and unlabeled data, the Jacobian regularizer with-
out unlabeled data and the Jacobian regularization with unlabeled
data using the FGSM [5] and PGD [6] attacks.

For each dataset, three models were trained using the naive reg-
ularizer and unlabeled data and three models were trained using
the Jacobian regularizer without unlabeled data. Their robust accu-
racy evaluated against the FGSM [5] and PGD |[6] attacks with dif-
ferent epsilon perturbation values (€) is outlined in Fig. 5. The
lambda values used for the Jacobian Regularizer were set to 0.01
for the MNIST dataset, 0.01 for the CIFAR10 dataset and 0.005 for
the Imagenette dataset and were found as specified in the previous
section.

As shown in Fig. 5, the proposed training framework performs
better for the MNIST dataset, whereas the Jacobian regularizer

Neurocomputing xXx (XXXx) XXX

performs better for the CIFAR10 and Imagenette dataset. This
improved performance has two potential explanations:

1. The data sparsity hypothesis is proven wrong for the CIFAR10
and Imagenette datasets.

The Jacobian regularizer is a stronger regularizer than our naive
regularizer, regardless of the extent to which the data distribu-
tion supports the high dimensional input data space.

2.

To find out which explanation is true, we compared the robust-
ness of models trained using just the Jacobian regularizer versus
models trained with both Jacobian regularization and unlabeled
data. Three models were trained per dataset. If the robustness does
not significantly improve after the Jacobian regularizer was
deployed with unlabeled data, we could conclude that unlabeled
data does not provide significant benefits for training models on
CIFAR10 and Imagenette datasets. In other words, the first explana-
tion holds true. Conversely, if the robustness does significantly
improve, the second explanation holds true. The pgq, values and
test accuracy of the trained models are shown in the rows “Jaco-
bian”, and “Jacobian + Unlabeled” in Table 4. The robust accuracy
is also shown with labels “Jacobian” and “Jacobian + Unlabeled”
in Fig. 6. As seen in Table 4 and Fig. 6, when the Jacobian regular-
izer is used in conjunction with unlabeled data, robustness indeed
improves. Therefore, the second explanation holds true. Jacobian
Regularization is izndeed more powerful than our naive regular-
izer. The proposed naive regularizer uses neighbor points to mini-
mize the slope of the SoftMax score surface. Depending on the
relative position of the neighbor data point with respect to the
labeled or unlabeled data point, our naive regularizer smooths
the SoftMax score surface in not all but a limited number of dimen-
sions in the input data space in exchange for a shorter training run-
time whereas the Jacobian regularizer smooths the SoftMax score
surface in all dimensions in the input data space at the location
of the input data point. A comparison of the runtime for the naive
regularizer with unlabeled data, the Jacobian regularizer and the
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Fig. 5. Figure shows the robust accuracy of models trained using the naive regularizer (Reg) with unlabeled data and the Jacobian regularization (Jacobian) without unlabeled
data [51] for MNIST, CIFAR10 and Imagenette datasets. The robust accuracy is measured using FGSM [5], and PGD [6] attacks with different epsilon perturbation values (€).
The reader is referred to the online version of this paper for the color representation of this figure.
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Table 4
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Columns p,ay(x107?) and Test Accuracy (%) show measured p,q, values from the DeepFool attack [7] and test accuracy for the models trained on MNIST, CIFAR10, and Imagenette
datasets. This table compares the robustness of models trained using the Jacobian regularization (Jacobian), Jacobian regularization and unlabeled data (Jacobian + Unlabeled), as
well as Jacobian regularization with Gaussian noise injected to the intermediate model outputs (Jacobian + Inject).

MNIST CIFAR10 Imagenette
Defence method Padv Test accuracy Padv Test accuracy Padv Test accuracy
(x107%) (%) (x107%) (%) (x107%) (%)
Jacobian 561 98.75 3.56 88.01 2.57 85.52
Jacobian + Unlabeled 1083 98.84 3.98 87.78 2.73 85.29
Jacobian + Inject 1582 98.70 4.42 87.24 421 86.93
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Fig. 6. Figure shows the robust accuracy of models trained using the Jacobian regularization term (Jacobian) versus models trained using both Jacobian regularization and
unlabeled data (Jacobian + Unlabeled) and the Jacobian regularization with Gaussian noise injected to the intermediate model outputs (Jacobian + Inject). The robust accuracy
is measured using FGSM [5] and PGD [6] attacks with different epsilon perturbation values (€). It can be seen that training models using both Jacobian regularization and
unlabeled data and Jacobian regularization with injected Gaussian noise to the intermediate model outputs are more resilient to adversarial perturbations. The reader is
referred to the online version of this paper for the color representation of this figure.

Table 5

Table shows the average runtime (in minutes) for training a LeNet network [62] with
MNIST dataset for 1 epoch, the runtime for training a ResNet 9 network [65] on
CIFAR10 dataset and a XResNet 18 network [66] on Imagenette dataset using our
naive regularization term with unlabeled data, the Jacobian regularization term and
the Jacobian regularization term with unlabeled data. All measurements were done
on a Google Colab T4 Tesla GPU for a single run.

Training Proposed + Unlabeled Jacobian Jacobian + Unlabeled

runtime (min) (min) (min)

MNIST 5.82 4.05 8.72

CIFAR10 11.83 1247 25.75
Imagenette 8.48 16.80 34.55

Jacobian regularizer with unlabeled data is shown in Table 5 where
the average training runtime for 1 epochs is reported in minutes
for each dataset. One can see that the runtime for the naive regu-
larizer with unlabeled data is less than the training time for the
Jacobian regularizer with unlabeled data by 1.5-4 times.

The reader may find certain differences in the robust accuracy
plots in our paper and the plots in the literature.There are two rea-
sons for the differences seen in the plots in our paper and the plots
in the literature. The first reason is that unlike the papers in the

10

literature where robust accuracy is reported for all samples in
the test dataset, we show adversarial robustness of a model for
samples that the model originally classified correctly. In other
words, we only perturb images that the model classifies correctly
and see if the model can still assign the perturbed images to the
correct class label. We believe showing how much a model’s per-
formance deteriorates on correctly classified images is a more
accurate measurement of robust accuracy of models.

Another reason for the difference seen in the plots can be due to
differences in the data preprocessing pipeline of our experiments
and the experiments conducted in the literature. In our preprocess-
ing pipelines, we followed standard preprocessing steps in the lit-
erature for the three datasets: MNIST, CIFAR10, and Imagenette.
We z-score standardized image intensities using the mean and
standard deviation of all the images in the training dataset. We also
applied augmentation methods for CIFAR10 and Imagenette data-
sets. The preprocessing pipelines are included in our code that is
available online. However, we were not able to find out what pre-
processing steps were performed for the algorithms in the litera-
ture such as Input Gradient [52] and Jacobian [51] regularization
algorithms. We used the standard Foolbox library [67] to measure
robust accuracy for our models. In the next section, the effect of
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different types of unlabeled data on the adversarial robustness of
DL models is analysed.

4.4. Gaussian Noise is as Effective as Costly and More Complex
Unlabeled Datasets

An important question is whether models trained with unla-
beled datasets widely utilized in the literature for SSL show a
higher adversarial performance compared to models trained with
unlabeled data generated with Gaussian noise. To answer this
question we trained two models for CIFAR10 dataset using our
naive regularizer with unlabeled data extracted from the 80 Mil-
lion Tiny Images dataset following the same automatic filtering
technique used by Xie et al. [56]. We also prepared another unla-
beled dataset by applying the synthesis technique proposed by
Uesato et al.[60]. Similar to many papers on semi-supervised learn-
ing and regularization [58,68,59], we ran experiments for different
numbers of labeled data points per class (N; = 128,256,512) and
the same number of unlabeled data points per labeled data point
(N, = 1) using these two unlabeled datasets, and compared the
robust accuracy of the trained models with those of models trained
with unlabeled data generated from Gaussian noise. Fig. 7 (a) and
(b) compare robust accuracy of models trained with unlabeled data
extracted from the 80 Million Tiny Images dataset and our models
using FGSM and PGD attacks. Similarly, Fig. 7 (c) and (d) compare
robust accuracy of models trained with unlabeled datasets gener-
ated using the synthesis technique proposed in the work by Uesato
et al.[60] with our models for FGSM and PGD attacks. Our models
show slightly less robust accuracy for the same number of unla-
beled data points, suggesting that generating unlabeled datasets
using Gaussian noise as explained in this paper is almost as effec-
tive as more complex and sometimes expensive unlabeled
datasets.

4.5. Effect of Regularization and Unlabeled Data on the Trained DL
Models

This section analyses the effect of our naive regularizer and the
amount of unlabeled data on adversarial robustness of DL models.
Fig. 8(a) (Left) shows robust accuracy for models trained with dif-
ferent number of unlabeled data per labeled data points (N, = 0, 5,
and 10) using our training framework (A = 100k), N, = 64, for the
MNIST dataset while other hyperparameters were fixed. Five mod-
els were trained for each set of parameters. Three different attack

methods (FSGM, PGD, and DeepFool (I*) were conducted on the
models, and the mean and standard error of the robust accuracy
were measured. The plots show that models trained with larger
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N, show higher robust accuracy. Models trained with and without
our naive regularizer (A = 100k, 0) were also compared for differ-
ent numbers of labeled data points per class (N, = 8,64,256) with
other hyperparameters fixed. Five different models were trained
similarly per set of parameters. All trained models had similar val-
idation accuracy. More details on the experiment design and
hyperparameters are provided in Appendix C of the Supplementary
Materials. Fig. 8 (b) (Left) shows the mean and standard error of
the robust accuracy values measured for the trained models sug-
gesting that models trained with our regularizer were more robust
compared to models trained without our regularizer. We ran sim-
ilar experiments on the CIFAR10 dataset. Fig. 8 (a) (Right) shows
the robust accuracy of models trained with N, = 1, 5, and 10,
4 =10k,N; =128 with other hyperparameters fixed for the
CIFAR10 dataset. All trained models had similar validation accu-
racy. As shown, the models trained with larger N, show higher
robust accuracy. Fig. 8 (b) (Right) shows the mean and standard
error of the robust accuracy values measured for models trained
with and without our regularizer (4 = 10k, 0) and different number
of labeled data points per class (N, = 128,256,512) with other
hyperparameters fixed. For all three parameter settings, models
trained with our naive regularizer were more robust than models
trained without our naive regularizer. The experiments show that
regularization and unlabeled data both have positive influence on
adversarial robustness of trained models. We only show the adver-

sarial robustness of the models using DeepFool (1) attack because
the models show a very small decrease in adversarial robustness
when attacked with DeepFool (I™).

4.6. The Effect of the Network Layer where Gaussian Noise is Applied

In the previous experiments, the unlabeled data was generated
once and passed through the model for regularization. In this sec-
tion, we conduct experiments to ascertain if applying Gaussian
noise to intermediate layers in the network would train models
with almost the same adversarial robustness or training models
with the generated unlabeled data results in more adversarially
robust models.Noise injection in the intermediate layers was con-
ducted in the same way the unlabeled dataset was generated. The
mean pair-wise Euclidean distance (f,,;,) between the outputs of
the previous layer in the network was measured for the labeled
dataset and multiples of ft,,;, was used as the standard deviation
of the Gaussian distribution from which noise was sampled. We
trained three models with intermediate noise injection explained
in detail in the Appendix D of the Supplementary Materials for
each dataset. Table 6 shows the measured pqq, values, and test
accuracy for these models and Fig. 9 shows the robust accuracy
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Fig. 7. Figure shows robustness of two models trained with regularization using a Gaussian generated dataset as the unlabeled data and using the 80 m@200k dataset as the
unlabeled data against FGSM (a) and PGD (b) attacks for models trained with 128, 256, and 512 labeled data points per class (N;) from the CIFAR10 dataset. (c) and (d) show
robustness of two models trained with regularization using a Gaussian generated dataset as the unlabeled and using the UDA generated dataset [56] as the unlabeled data
against FGSM and PGD attacks respectively. The reader is referred to the online version of this paper for the color representation of this figure.
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Fig. 8. (a) Shows the robust accuracy for models trained on the MNIST dataset using regularization with 2 = 100k and N, = 64 (left), and robust accuracy for models trained
on the CIFAR10 dataset using regularization with 4 = 10k and N, = 128 for different numbers of unlabeled data points per labeled data points, N, using FGSM, PGD, and
DeepFool (lz) attacks (right). (b) Shows the robust accuracy for models trained on the MNIST dataset with and without regularization (4 = 100k, 0) with different numbers of
labeled data points, N; = 8, 64,256 (left). (Right) Shows the robust accuracy for models trained on the CIFAR10 dataset with and without regularization (4 = 10k, 0) with
different numbers of labeled data points, N;, using FGSM, PGD, and DeepFool (lz) attacks. The reader is referred to the online version of this paper for the color representation
of this figure.

Table 6

Columns Puq,(x1072) and Test Accuracy (%) show measured p,q, values using DeepFool attack [7] and test accuracy for the models trained on the MNIST, CIFAR10, and Imagenette
datasets. This table compares the robustness of models trained using the naive regularizer with unlabeled data (Reg + Unlabeled) with models trained using the naive regularizer
and intermediate noise injection (Reg + Inject).

MNIST CIFAR10 Imagenette
Defence method Padv Test Padv Test Padv Test
accuracy accuracy accuracy
(x107%) (%) (x107%) (%) (x1072) (%)
Reg + Unlabeled 46.29 98.69 3.29 83.96 2.21 84.92
Reg + Inject 23.51 98.41 1.39 91.02 2.29 86.43

for these models compared with models trained with our naive intermediate noise injection to investigate if the adversarial

regularizer and unlabeled data. The results in Table 6 show that robustness would similarly decrease faster for models trained
the p.4, values are lower when noise is injected to the intermedi- with intermediate noise injection as observed for our naive reg-
ate layers of the models during training compared to when models ularizer. Three models were trained for each dataset in the
are trained with unlabeled data for the MNIST and CIFAR10 data- same way. The py, values and test accuracy is shown in Table 4
sets. The p.q, value is higher when noise is injected to the interme- with labels “Jacobian + Unlabeled” and “Jacobian + Inject”,
diate layers of the models during training for the Imagenette respectively. The corresponding robust accuracy is also shown
dataset. Fig. 9 also shows that the robust accuracy of models in Fig. 6. The results show models trained with intermediate
trained with noise injection decreases faster than models trained noise injection are more robust against adversarial attacks com-
with unlabeled data when epsilon perturbation value, €, increases pared to models trained with unlabeled data when the Jacobian
except for models trained on the Imagenette dataset and evaluated regularization is utilized. This suggests that noise injection at
against FGSM attack. intermediate layers in the same way the unlabeled data was

We also compared models trained with Jacobian regulariza- generated trains more adversarially robust models when using

tion and wunlabeled data and Jacobian regularization and Jacobian regularization term.
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Fig. 9. Figure shows the robust accuracy of models trained using the naive regularizer with unlabeled data (Reg) and the naive regularizer with noise injection (Reg + Inject).
The robust accuracy is measured using FGSM [5] and PGD [6] attacks with different epsilon perturbation values (¢€). The reader is referred to the online version of this paper

for the color representation of this figure.

Table 7

Table compares prediction confidence of DL models on UUC data points taken from Imagenette dataset. The DL models are trained on MNIST and CIFAR10 datasets using our

training framework and without regularization for five different seeds.

No Regularization

Regularization

;'g MNIST Model — Imagenette Data MNIST Model — Imagenette Data
é 0.6
B 0.4 ﬁ
Qo2
(O]
AR INNP A FRIF R
3
=
:g ;'g CIFAR10 Model — Imagenette Data ‘ CIFAR10 Model — Imagenette Data ‘
% 05
004 a
< o2

01 2 34 5 6 7 8 9 01 2 3 4 5 67 8 9
Classes

4.7. Prediction Confidence Decreases for Unknown Unknown Classes

Open Set Recognition (OSR) describes the scenario where a DL
model is trained with data points from the training dataset known
as known known data points (KKCs) similar to normal training.
However, during testing, new classes which are not seen during
training also known as unknown unknown data points (UUCs)
appear among KKC data points. The model is expected to correctly
identify KKC data points and reject UUC data points [69]. Many
proposed methods train DL models with an additional class label
for the UUCs and aim for a decision boundary that tightly binds
the support for each class distribution. The work by Shao et al.
[70] showed that such OSR methods are vulnerable to adversarial
attacks and proposed a defense mechanism to detect and remove
adversarial noise. Other OSR algorithms do not add a new class
label, but instead train models to assign UUC data points to every
class with low probability [71]. Since UUC distributions are
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hypothesized to be away from the class distributions seen in the
training dataset, we evaluated whether our trained models with
the proposed training framework are able to provide OSR by
decreasing the prediction confidence for UUC data points.

We fed the models trained on the MNIST dataset with the test
set for Imagenette dataset and measured the mean and standard
deviation of the predictions for each class. We performed the same
experiment for the models trained on the CIFAR10 dataset. The
results were compared with the mean and standard deviation of
predictions for models trained using normal training. Table 7
shows the average class prediction and the standard deviation of
predictions for each class. As shown, the standard deviation of pre-
dictions for each class decreases and the predictions are spread
more evenly among the classes for models trained using regular-
ization and unlabeled data. In other words, the prediction confi-
dence of models on UUC data points is consistently lower for
models trained with regularization compared to model trained
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without regularization implying that the SoftMax score surface at
the location of UUC distributions in the high dimensional input
data space is flattened.

5. Discussion and Conclusion

In this paper, we hypothesized that data sparsity and large
numbers of redundant parameters in DL models allow different
DL models to learn decision boundaries with different appearances
in the space outside the support of the data distribution. Such
models can have equally high prediction accuracy on clean data-
sets, however, their robustness against adversarial attacks can be
very different. We also hypothesized that a model with a smooth
SoftMax score surface whose decision boundary stays far from
each class distribution is ideal in terms of adversarial robustness.
Following these hypotheses, we automatically generated an unla-
beled dataset to cover the space outside the support of the data
distribution using Gaussian noise. We then used a regularization
term to train DL models with smooth SoftMax score surfaces using
both the original and unlabeled dataset. Using the generated unla-
beled data, we were able to train DL models to have smooth Soft-
Max score surfaces outside the support of the input data
distribution. We empirically showed that the proposed training
framework indeed increases the distance from data points to the
decision boundary for models trained on MNIST, CIFAR10 and Ima-
genette datasets. We also showed that the proposed training
framework trains models with SoftMax score surfaces similar to
the hypothesized ideal SoftMax score surface for a 2D Points data-
set. Although we believe the Jacobian regularizer is a strong regu-
larization term which can train DL models with smooth SoftMax
score surfaces, we deployed a more naive regularization term with
shorter runtime for our rigorous experiments. However, in multi-
ple occasions we deployed the Jacobian regularizer and showed
that the latter generally performs better than the former. We also
showed that using an unlabeled dataset generated by Gaussian
noise while considering the spread of the labeled data distribution
in the high dimensional input data space is almost as effective as
unlabeled datasets sourced from expensive and manually collected
datasets or generated using complex synthesis algorithms. Finally,
we demonstrated that models trained with our framework also
show consistently less confidence in classifying samples from
unknown classes as expected in the open set recognition domain.
This paper empirically tests our hypothesis about data sparsity,
DL models and their decision boundaries. Our future objective is
to theoretically prove that Jacobian regularization and our unla-
beled data indeed train models with smooth SoftMax score surface
with decision boundaries far from each class distribution.
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