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Background
This section presents the motivation for proposing a regional registration algorithm for 
whole slides images (WSIs). It also provides the objectives in this paper, literature review 
of the previously proposed registration algorithms for WSIs, and the innovation in the 
proposed algorithm compared to existing registration methods.

Abstract 

Background: High resolution 2D whole slide imaging provides rich information about 
the tissue structure. This information can be a lot richer if these 2D images can be 
stacked into a 3D tissue volume. A 3D analysis, however, requires accurate reconstruc‑
tion of the tissue volume from the 2D image stack. This task is not trivial due to the 
distortions such as tissue tearing, folding and missing at each slide. Performing registra‑
tion for the whole tissue slices may be adversely affected by distorted tissue regions. 
Consequently, regional registration is found to be more effective. In this paper, we 
propose a new approach to an accurate and robust registration of regions of interest 
for whole slide images. We introduce the idea of multi‑scale attention for registration.

Results: Using mean similarity index as the metric, the proposed algorithm (mean ± 
SD 0.84± 0.11 ) followed by a fine registration algorithm ( 0.86± 0.08 ) outperformed 
the state‑of‑the‑art linear whole tissue registration algorithm ( 0.74± 0.19 ) and the 
regional version of this algorithm ( 0.81± 0.15 ). The proposed algorithm also out‑
performs the state‑of‑the‑art nonlinear registration algorithm (original: 0.82± 0.12 , 
regional: 0.77± 0.22 ) for whole slide images and a recently proposed patch‑based reg‑
istration algorithm (patch size 256: 0.79± 0.16 , patch size 512: 0.77± 0.16 ) for medical 
images.

Conclusion: Using multi‑scale attention mechanism leads to a more robust and accu‑
rate solution to the problem of regional registration of whole slide images corrupted in 
some parts by major histological artifacts in the imaged tissue.

Keywords: Whole slide images, Immunohistochemistry images, Rigid registration, 
Blood vessel 3D reconstruction, Multi‑scale attention
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Motivation

Whole slide imaging (WSI) has enabled developing automatic analysis and diagnostic 
tools for more accurate identification and study of diseases. Since its development, 
clinical studies using WSIs and light microscopy have shown comparable accuracy 
for primary diagnostics in breast pathology  [1], gastrointestinal tract pathology  [2], 
and urinary system pathology [3]. High-resolution 3D reconstruction of the original 
tissue volume from the 2D slices of WSIs enables researchers to study certain features 
which cannot be revealed inthe 2D images, such as the vascular structure, length and 
branching of vessels or colocalization of biomarkers. During the tissue cutting and 
mounting process, each individual thin section may experience serious artifacts such 
as tissue tearing, folding, or missing. As a result, accurate 3D reconstruction of the 
tissue volume requires first registering the tissue in subsequent image slides.

The image acquisition process for a small volume of fixed tissue involves cutting the 
volume into very thin sections and mounting them on microscope slides for staining. 
Scanning is performed for each slide individually after staining. The morphological 
changes which may occur to the tissue during slide preparation such as tissue com-
pression or stretching, missing or torn tissue, stain variations, rotation and transla-
tion of the tissue [4] are some of the reasons why registration of whole slide images 
is challenging. Figure 1 shows a few examples of tumor tissue samples from patients 
with clear cell renal cell carcinoma. Tissue compression, missing tissue and tissue 
tears are found very often in the scanned images. Currently, there exists no algo-
rithm which can recover the highly deformed tissue regions shown with black boxes 
in Fig. 1. This is also not the aim of the proposed registration algorithm in this paper. 
These deformed regions may occupy a large part of the image and adversely affect 
many global registration algorithms  [5–13] making these algorithms unreliable. The 
aim of this paper is to address this problem by designing a robust registration algo-
rithm that registers user-defined tissue regions in WSIs accurately. This registration 
method is not affected by the presence of adverse artifacts outside of the region of 
interest (ROI).

Objectives

We summarize the objectives of this paper as follows: 

1 Design a registration algorithm that can perform registration for the ROI defined by 
the user in the WSI stack with high accuracy.

2 Registration accuracy of the proposed algorithm will not be affected by any highly 
deformed regions outside of the selected ROI.

3 The proposed algorithm can perform registration in a reasonable amount of time for 
hundreds of WSIs.

4 The proposed algorithm is highly robust in the existence of different types of distor-
tions in the WSI stack.



Page 3 of 20Paknezhad et al. BMC Bioinformatics          (2020) 21:558  

Literature review

Due to the large size of whole slide images in their full resolution, well-established 
registration methods cannot be deployed to register these images with high accu-
racy without a high performance computing system. Application of these meth-
ods on lower resolutions may also result in significant registration errors in the full 
resolution. Previously proposed whole slide tissue registration algorithms take dif-
ferent approaches to keep the computation time reasonable as well as to find the 
global optimum solution. Proposed algorithms such as  [5, 6, 8] are classified as 
multi-scale approaches. In multi-scale registration methods, the registration is per-
formed for coarse resolutions of the images first and the resulting deformation field is 
refined using finer resolutions of the images. In the work by Wang and Chen [6], for 
instance, the images are sparsely represented in the coarse level by extracting SIFT 
features [14]. The extracted features are used to estimate the transformation needed 
to align the two images. In the fine level, an area based b-spline method is deployed 
to improve the registration. In another work by Moles Lopez et  al.  [5], a four-level 
pyramidal registration with linear transformations is utilized. To increase the regis-
tration speed, similarity is only measured on randomly sampled pixels from the whole 
tissue in this approach.

The works such as [10–12] are patch-based approaches to WSI registration. In patch-
based methods, the image is divided into regularly spaced patches and registration is 
carried out for each patch individually. The method proposed by Balakrishnan et al. [7, 
15] is a good example of this group of algorithms. In this algorithm, a convolutional neu-
ral network is trained on randomly selected pairs of moving and fixed image patches 
from the training data set in an unsupervised manner using a loss function that takes 
into account image similarity and deformation field smoothness. The trained network 
is then able to register unseen whole tissue image pairs. Many patch-based algorithms 
are also multi-scale. The work by Roberts et al. [10], is a good example, where consecu-
tive slides are aligned non-rigidly first. Patch-based registration is then performed for 
increasing resolutions of the images. Finally, a global b-spline non-rigid transformation 
is estimated from the set of rigid patch transforms. The work by Lotz et al. [12] is another 
example of multi-scale patch-based methods where non-rigid registration is carried out 
on the patches that are allowed to overlap. Proposed registration algorithms such as [9, 
13] take advantage of the vessel structure in images to improve the registration output. 
In the work by Schwier at al. [13], for example, vessels are extracted from each image and 
non-rigid registration is performed using the vessel masks. The work by Liang et al. [9] 
proposes a multi-scale registration algorithm which rigidly aligns the patches, fuses the 
rigid transformations by a cubic b-spline deformation and performs vessel segmentation 
and association later on to reduce the registration error. The work by Jiang et al. [16] pre-
sents a registration algorithm for registering re-stained images which refers to the pro-
cedure when tissue is stained, imaged, washed, stained again, and imaged again. In this 
procedure, the tissue slices do not suffer from potential distortions related to sectioning, 
or differences in the tissue sections. Consequently, they fulfill a different objective from 
our objective in this paper.

Considering the strong presence of tissue deformations in the acquired virtual slices 
and the large size of these images, landmark-based methods may be misguided by highly 
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deformed regions in the tissue. The work by Vink et  al.  [17] suggests that in order to 
get an accurate registration of whole slide images, landmarks located in unreliable areas, 
such as folded, torn or missing tissue regions, need to be detected and treated differ-
ently from reliable landmarks. There has been efforts to detect unreliable regions in the 
tissue such as the work by Babaie et  al.  [18] where folded tissue regions are detected 
using a deep learning technique or the work by Agarwal et al. [19] where an algorithm 
is proposed to locate major histological artifacts in tissue images. However, these algo-
rithms are trained or tested on specific image data sets. Performance of landmark-based 
registration algorithms using these artifact detection methods need to be evaluated. 
Solorzano et al. [20] divide the whole tissue slide into manually selected sub-regions and 
perform registration in a single scale for each sub-region using coarse features. Although 
performing registration on tissue sub-regions improves the registration results, single-
scale registration does not yield high cell-level registration accuracy. Also, registration 
for regions with highly deformed tissue sections will be poor and may adversely affect 
the output deformation field for the whole tissue slide. We propose a novel multi-scale 
approach for registration of whole slide images that performs registration only for 
the user-defined ROI on the tissue section. The proposed algorithm registers the ROI 
marked by the user in the tissue section very well. The novelty is the multi-scale atten-
tion mechanism which makes the registration algorithm robust and accurate. Artifacts 
outside of the ROI marked by the user do not affect the registration outcome. A naive 
solution to registration of the user-defined ROI is to crop the ROI in the 2D image stack 
and perform registration for the cropped regions. The cropped regions, however, may 
not have enough common tissue information based on which an accurate registration 
could be achieved. We present our proposed algorithm in Method section. We have 
focused on registration of the region around blood vessels in order to be able to quan-
tify the registration accuracy using manual lumen segmentations. In the next section, we 
evaluate the proposed method on a data set of whole slide image stacks acquired from 
clear cell renal cell carcinoma patients.

Innovation

Although there are proposed algorithms that take advantage of (1) multi-scale regis-
tration techniques  [5] and (2) coarse features in the tissue slides  [6] for registration of 
WSIs, the novelty of the proposed algorithm in this paper lies on the efficient way these 
two factors are deployed. The first novelty compared to the previously proposed multi-
scale registration algorithms is in the fact that we use a multi-scale attention mechanism 
where registration is initiated for a large region around the ROI and increasingly concen-
trates on a smaller region around the ROI as the resolution increases, giving more atten-
tion to a smaller region around the ROI. This is in contrast to the existing multi-scale 
algorithms where the whole tissue is registered at all resolutions. Registration starts on 
the entire low resolution images and proceeds to registering the entire high resolution 
images. Our mutli-scale attention approach makes the registration robust against major 
deformations that may exist outside of the ROI. It also makes the algorithm desirable for 
registering a ROI in large images in a reasonable amount of time. The second novelty 
is that we propose a method to select a small subset of SIFT key points that can effec-
tively align the two tissue regions. Therefore, our registration algorithm avoids using 



Page 5 of 20Paknezhad et al. BMC Bioinformatics          (2020) 21:558  

non-specific key points that would degrade the registration outcome. We will explain 
our algorithm in detail in the Method Section. These two approaches together deliver 
a robust regional registration technique which satisfies the objectives of this paper as 
mentioned in the Objectives Section. The proposed algorithm does not need to know 
the location of highly deformed regions in the tissue section.

Results
In this section, we evaluate the performance of the proposed registration algorithm on 
our data set of whole immunohistochemical slice images of clear cell renal cell carci-
noma. The organization of this section is as follows. We explain our data set in the fol-
lowing paragraph, followed by the evaluation of the proposed algorithm on the presented 
data set. Next, we compare our proposed algorithm with three different previously pro-
posed methods: (1) a multi-scale rigid registration algorithm [5], (2) a patch-based, deep 
learning registration algorithm [7], and (3) a SIFT-feature-based non-rigid registration 
algorithm  [6]. The mentioned algorithms were found after an excessive search for a 
diverse set of well-known algorithms that address similar objectives in our paper.

Data set

Our data set consists of whole immunohistochemical slide images of three patients with 
clear cell renal cell carcinoma. All three specimens were fixed in formalin and embed-
ded in paraffin blocks. A sequence of 100 slices were cut with image resolution of 0.5 
µm/pixel for patient 1, and 0.25 µm/pixel for patient 2, and 150 slices were cut with 
image resolution of 0.25 µm/pixel for patient 3 from the tissue blocks with 4 µm thick-
ness. All tissue sections were double-stained to reveal the endothelial cell marker CD31 
(Dako M0823, Clone JC70A, 1:50 dilution, Epitope Retrieval 2, pH 9.0) and the pericyte 
marker α-SMA Dako M0851, Clone 1A4, 1:1000 dilution, Epitope Retrieval 2, pH 9.0). 
Immunohistochemical staining was performed using the Leica Bond Max autostainer 
(Leica Biosystems Melbourne) according to the manufacturer’s instructions. The double 
stains were visualized using the Bond Polymer Refine Detection and the Bond Refine 
Red Detection systems (Leica Biosystems), with CD31 staining brown and SMA staining 
red. Each slide was scanned at high resolution with IntelliSite Pathology Ultra Fast Scan-
ner (Philips Digital Pathology Solutions, The Netherlands) and viewed with IMS Viewer 
(Philips, The Netherlands). All registration experiments were performed on level 4 mag-
nification of the whole slide images as the full resolution image in this paper. Although 
our data set consists of merely three acquired image stacks, a combination of 20 blood 
vessels with different shape and orientation and from different regions in the images 
were selected for registration to adequately test robustness of the proposed algorithm. 
Tissue tearing, folding, and missing were observed frequently in all 4 image stacks. Four 
resolution levels were considered for the proposed registration algorithm. The lumen 
for each blood vessel was segmented manually. The output transformation matrices for 
the registered blood vessels were applied to the corresponding lumen segmentations to 
measure the registration accuracy. It is important to emphasize that the lumen segmen-
tations were solely used to compare the performance of the proposed method with the 
competing methods. These segmentations were not used in any steps of the registration 
pipeline.
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Evaluation of the proposed algorithm

A 2D view of the blood vessels that were selected for registration are shown in the first 
column in Figs. 2 and 3 for 20 blood vessels. We applied the proposed algorithm on all 
20 selected blood vessels. The 3D reconstruction of the selected blood vessels before 
registration, and the resulting 3D reconstructed blood vessels after performing registra-
tion using the proposed algorithm are shown in the second and third columns, respec-
tively, in Figs.  2 and  3. The original image scale in the z dimension is compressed for 
presentation purposes. As can be seen, the vessels are well-aligned using the proposed 
algorithm for most of the slices except for a few slices highlighted by red boxes. In Addi-
tional file 1: Fig. 3, we have provided the registration results for a few pairs of slides for 
these blood vessels, the best SIFT feature matches for the ROIs in the previous and cur-
rent slides, and the selected 3 SIFT feature matches that resulted in the best alignment of 
the 2 slides.

In order to have a quantitative measurement of the accuracy of the proposed regis-
tration algorithm, we used Dice similarity coefficient as the similarity metric. Dice 
similarity coefficient (DSC) also known as Dice similarity index measures the similarity 
between non-zero pixels in the two lumen masks after registration using the following 
formula:

where A and B are the set of non-zero pixels in the first and the second lumen mask, 
respectively. The operator |.| defines the size of the set and the operator 

⋂

 represents 
the intersection of the two sets. This metric was chosen for quantitative analysis mainly 
because DSC stays meaningful for any two consecutive images in which blood vessel 
branching occurs. The DSC ( mean± std ) for lumen segmentations after registration 
using the proposed algorithm for the 20 blood vessels and 5 consecutive slices was meas-
ured and is reported as Proposed Algorithm in Table 2.

Comparison with a multi‑scale rigid approach

We compared our algorithm with the state-of-the-art multi-scale registration method 
by Moles Lopez et al. [5] mentioned in the Background Section where they introduce a 
four-level registration algorithm. Similar to our approach, their algorithm performs reg-
istration on the low resolution images first. The resulting deformation field is applied 
to the next higher resolution images before performing registration on this level. Their 
algorithm does not utilize the multi-scale attention mechanism proposed in this paper. 
In order to make the algorithm faster and more robust, they measure their similarity 
metric only on randomly sampled pixels in the whole image. They consider only linear 
transformations , Tµ , (affine and rigid) for registration. There exists a few hyperparam-
eters for this algorithm such as the similarity metric: Mattes mutual information (MI) 
or normalized cross correlation (NCC), the number of pixels to evaluate the similar-
ity metric on ( Ns ), the number of iterations, Ni , of the optimization procedure, and the 
image channels to use for registration: the hematoxylin channel (blue) or the luminance 
channel.

DSC = 2
|A

⋂

B|

|A| + |B|
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Table 1 shows the set of hyperparameters for this algorithm together with possible 
values for these parameters. The parameter values were taken from the set of values 
evaluated for high-resolution images in the paper by Moles Lopez et al.  [5] (Table 1 
in the paper) except for the values for maximum step length (MSL) where we found 
the range 1, 5, 10, 20 outputting more accurate registration results. We tested the 
algorithm with different combination of the parameter values defined in Table 1 for 
5 consecutive slices and found the set of values that gave the best mean registration 
accuracy for all the 20 blood vessels to be Tµ = Affine, S = MI, MSL = 10, and Input 
= Lum.
Table 1 Table shows the  set of  parameter values that  were tested for  the  multi-scale 
registration algorithm proposed by Moles Lopez et al. [5]

The parameter values which resulted in the best mean registration accuracy for all the 20 blood vessels are shown in italic

Parameter All resolutions

Tµ Affine, Rigid

S MI, NCC

Ns 8000

Ni 2000

MSL 1, 5, 10, 20

Input Lum, Hem

Table 2 Mean Dice similarity coefficient (DSC) for  the  lumen segmentations 
after registration

The DSC was measured for lumen segmentations of 20 blood vessels for 5 consecutive slices after registration using the 
method proposed by Moles Lopez et al. [5] (Moles Lopez et al. [5] 1 Round), the regional version of this method (Moles 
Lopez et al. [5] 2 Rounds), the method proposed by Wang and Chen [6] (Wang and Chen [6]—1 Round), the regional version 
of this method (Wang and Chen [6]—2 Rounds), and the patch-based method proposed by Balakrishnan et al. [7] with patch 
sizes 256 × 256 pixels and 512 × 512 pixels. Their performance was compared with those of the proposed algorithm, and the 
proposed method followed by fine registration using Moles Lopez et al. [5]. The time required for training and executing the 
algorithms on 5 consecutive image slices is presented in the third and fourth columns
a Ubuntu 19.04.4 LTS 64-bit, Intel Core i7-6700 CPU 3.40 GHz × 8, 31.4GB RAM
b Windows 8.1 Pro 64-bit, Intel Core i7-4720HQ CPU 2.60GHz, 11.9GB RAM

Method DSC Training time Exec. time

Moles Lopez et al. [5]—1 Round 0.74± 0.19 − 5.8  mina

Moles Lopez et al. [5]—2 Rounds 0.81± 0.15 − 6.4mina

Wang and Chen [6]—1 Round 0.82± 0.12 − 2.8 min b

Wang and Chen [6]—2 Rounds 0.77± 0.22 − 3.0  minb

Balakrishnan et al. [7]—Patch size 256 0.79± 0.16 80.5  mina 0.34  mina

Balakrishnan et al. [7]—Patch size 512 0.77± 0.16 316.9  mina 0.35  mina

Proposed Algorithm 0.84± 0.11 − 3.4  mina

Proposed Algorithm followed by Moles Lopez 
et al. [5]

0.86± 0.08 − 5.6  mina

Fig. 1 A few examples of tissue deformation in two consecutive whole slide images ( Ii  , Ii+1 ). Such 
deformations make registration of whole slide images challenging
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Using this set of values, we applied the method on the images with the surrounding 
artifacts removed ( ̃Iseq ) for all the 20 blood vessels following the Removing surrounding 
artifacts steps in the Methods section. The mean registration accuracy for this method 
is reported as Moles Lopez et al. [5] 1 Round in Table. 2. To have a fair comparison, the 
method proposed by Moles Lopez et  al.  [5] was also provided with the same manual 
user input ( ROI0i  ) that was provided to our algorithm. The ROI defined by user ( ROI0i  ) 
was extracted from the registered images and further registration was performed on the 
cropped regions. This approach is referred to as (Moles Lopez et  al.  [5] 2 Rounds) in 
Table 2. After applying the proposed registration algorithm, the user-defined ROI was 
extracted from the registered images and another round of registration using the method 
by Moles Lopez et al.  [5] was performed to further improve the registration accuracy. 

Fig. 2 First column in figure shows a 2D view of the blood vessels that were chosen for registration. The 
second column shows 3D reconstruction of the blood vessels before registration. The 3D reconstruction 
of the blood vessels after registration using the proposed algorithm, the proposed algorithm followed by 
Moles Lopez et al. [5], and Moles Lopez et al. [5] 2 Rounds are shown in the third, fourth, and fifth columns, 
respectively
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We refer to this method as proposed method followed by fine registration throughout the 
paper. Registration accuracy for the proposed algorithm followed by fine registration 
using the work of Moles Lopez et al. [5] is also reported in Table 2.

Figure  4 compares registration accuracy of the proposed method and the proposed 
method followed by fine registration using the method by Moles Lopez et al.  [5] with 
those of the whole tissue registration method (Moles Lopez et al. [5] 1 Round) and the 
regional version of this method (Moles Lopez et al. [5] 2 Rounds) for each blood vessel 
for 5 consecutive slices. As shown, both the proposed method and the proposed algo-
rithm followed by fine registration provide more accurate and robust results. We also 
performed registration for all tissue slices (100–150) for the 20 blood vessels using the 
proposed algorithm and compared the results with the three other methods in Fig. 5.

Fig. 3 First column in figure shows a 2D view of the blood vessels that were chosen for registration. The 
second column shows 3D reconstruction of the blood vessels before registration. The 3D reconstruction 
of the blood vessels after registration using the proposed algorithm, the proposed algorithm followed by 
Moles Lopez et al. [5], and Moles Lopez et al. [5]. 2 Rounds are shown in the third, fourth, and fifth columns, 
respectively
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The measured DSC for the proposed algorithm and the proposed algorithm followed 
by fine registration was 0.84 ± 0.07 , and 0.86± 0.06 , respectively, both outperforming 
the work of Moles Lopez et  al.  [5] ( 0.70± 0.24 ) and the regional version of this algo-
rithm ( 0.74 ± 0.25 ) for all 100-150 slices. The fourth and fifth columns in Figs. 2 and 3 
show 3D reconstruction of the registered lumen masks using the proposed algorithm 
followed by fine registration, and regional version (Moles Lopez et al.  [5] 2 rounds) of 
the method by Moles Lopez et al. [5].

In order to ensure that the proposed registration algorithm and the final registra-
tion results after applying fine registration are robust against different sizes of the ROI, 
we considered different ROI sizes around the blood vessels of interest and performed 
registration using the proposed algorithm and the competing methods. The results are 
provided in Additional file  1: Fig.  4. The results suggest that performing fine registra-
tion after applying the proposed algorithm does not always provide reasonable results 
for small ROIs for the experiments with MSL = 10 . However, fine registration is robust 
against medium and large ROIs with MSL = 10 and all three ROI sizes with MSL = 1.

Comparison with a patch‑based deep learning approach

We also compared our algorithm to the patch-based registration algorithm proposed by 
Balakrishnan et  al.  [7]. We first registered all slices in an affine manner using the Fiji 

Fig. 4 Figure compares registration accuracy using the proposed method, the proposed followed by fine 
registration (Proposed alg and Moles Lopez et al. [5]), the original (Moles Lopez et al. [5] 1 Round) and the 
regional version (Moles Lopez et al. [5] 2 Rounds) of the method by Moles Lopez et al. [5] for 5 consecutive 
slices

Fig. 5 Figure compares the Dice similarity coefficient (DSC) measured for the proposed method and the 
method proposed by Moles Lopez et al. [5] applied on all slices of the tissue volume (100–150 slices)
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tool  [21]. Later, we trained the proposed neural network model with pairs of patches 
extracted from a patient’s image scans and applied the trained model on the images from 
the same patient to have a fair comparison with the other methods. In order to regis-
ter 5 consecutive image slices for each patient, we first trained the proposed convolu-
tional neural network model in an unsupervised manner on randomly selected patches 
cropped from these image slices. The trained model was then applied on the same con-
secutive pairs of whole slide images to register. Hyperparameters were tuned to get high 
registration accuracies. The values were assigned as follows. Two models were trained 
with patch-sizes of 256 × 256 and patch-sizes of 512 × 512 with a batch-size of 8 and 500 
pairs of patches sampled in each iteration. The regularization parameter value for the 
loss function was set to 1, a learning rate of 1e − 3 was defined and mean squared error 
was utilized as the image similarity metric. Both models were trained for 30 iterations. 
The number of iterations was found to be enough for both models to converge and keep 
the required training time short. The results for both patch-sizes were compared with 
our proposed registration results in Fig. 6. The registration results for the patch-based 
registration algorithm by Balakrishnan et al. [7] for different patch-sizes are also shown 
separately in Fig. 7. As can be seen, the patch-based registration algorithm is not able to 
provide a good registration of the ROI compared to our proposed method.

Comparison with a SIFT‑feature‑based non‑rigid approach

We also compared the proposed algorithm to whole tissue registration method by Wang 
and Chen  [6] mentioned in Background Section which, similar to our algorithm, uses 
SIFT features for registration. In order to improve the registration results, they also 
perform an area-based bi-directional elastic b-spline registration as the final stage of 
their pipeline. In a similar way, we performed registration for the 20 defined blood ves-
sels for 5 consecutive slices using the proposed method by Wang and Chen [6] (Wang 
and Chen [6] 1 Round) and the regional version of this method (Wang and Chen [6] 2 
Rounds) and compared the results with those of our proposed method in Fig. 8. Quan-
titative comparison is also provided in Table 2. As can be seen, our algorithm outputs 
more robust results with better or similar accuracy supporting our assumption that a 
rigid registration is sufficient for local registration of the tissue.

Fig. 6 Figure compares the Dice similarity coefficient (DSC) measured for the proposed method and 
the proposed method followed by fine registration (Proposed alg and Moles Lopez et al. [5]), and the 
patch‑based registration method by Balakrishnan et al. [7] with patch sizes 256 and 512
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The fourth column in Table  2 reports the measured execution time for registration 
of 5 consecutive slices by the corresponding algorithm. Note that the average execu-
tion time for the proposed algorithm followed by Moles Lopez et al. [5] is less than the 
average execution time for the original method [5] because fine registration using [5] is 
performed on the ROI which takes a shorter time compared to when running the algo-
rithm on the whole image. A more optimal incorporation of the two algorithms together 
can further decrease the execution time for the proposed algorithm followed by Moles 
Lopez et al. [5]. Also, note that the measured time for the original and regional version 
of the method by Wang and Chen [6] was calculated on a Windows 8.1 Pro 64-bit system 
with Intel Core i7-4720HQ CPU 2.60GHz and 11.9GB RAM while the rest of the experi-
ments were carried out on an Ubuntu 19.04 LTS 64 bit system with Intel Core i7-6700 
CPU 3.40 GHz × 8 with 31.4GB RAM for technical reasons. The third column in the 
Table for the patch-based method by Balakrishnan et al.  [7] refers to the average time 
spent to train the model using randomly extracted patches from the input image slides.

It should also be mentioned that the measured execution time does not include the 
amount of time required by the user to select the ROI for each blood vessel of interest. 
However, this task is trivial and usually takes a few seconds for the following reason. 
Selection of the ROI is performed in a lower resolution of the whole tissue slide such 
that the user is able to see the blood vessels clearly and at the same time have a com-
plete view of the whole tissue. The selected ROI by the user in this resolution is then 

Fig. 7 Figure shows the registration results for the patch‑based registration method [7] with patch sizes 256 
× 256 and 512 × 512

Fig. 8 Figure compares our results with the original (Wang and Chen [6] 1 Round) and the regional version 
(Wang and Chen [6] 2 Rounds) of the proposed method by Wang and Chen [6] for 5 consecutive slices



Page 13 of 20Paknezhad et al. BMC Bioinformatics          (2020) 21:558  

upsampled to find the ROI for the full resolution of the image. The size of the ROI in the 
full resolution is then used for all lower resolutions unless the ROI boundaries exceed 
the low-resolution image boundaries, in that case the ROI is adjusted to stay in the low-
resolution image boundaries.

Discussion
In this paper, we propose a novel multi-scale approach for registration of the tissue in 
whole slide images. The user marks the ROI in the tissue section. The proposed algo-
rithm will perform registration for that ROI in consecutive whole slides images. We use 
a novel multi-scale attention mechanism that concentrates on a big region around the 
user-defined ROI in low resolutions of the images and incrementally gives more atten-
tion to smaller regions around the user-defined ROI in higher resolutions. We also 
develop a method that effectively selects a subset of SIFT key features that can align the 
two regions very well. The registration outcome is not affected by artifacts outside of the 
ROI.

Our experiments approve the fact that simple rigid transformation models can result 
in better regional registrations even in the presence of non-rigid deformations. In other 
words, the transformation field for a non-rigidly deformed tissue can be approximated 
by many small rigid deformations measured on small sections on the tissue.

The proposed method is staining-invariant and can be applied on multi-stained, dou-
ble-stained, or Luminance images since it takes advantage of coarse features that are 
extracted using SIFT feature detection algorithm. The ability to perform the registration 
on full-resolution of images increases accuracy of the results. Our experiments showed 
that the proposed method outperforms two state-of-the-art rigid and non-rigid registra-
tion algorithms and one deep-learning, patch-based registration algorithm.

Although the proposed method was not evaluated on different image modalities in 
this paper, deploying this method for different modalities is straight-forward as the only 
parameter that needs to be tuned is the number of layers in each octave for the SIFT 
feature detection algorithm which effects the number of detected key points on the tis-
sue. For our experiments, we used the same number of layers per octave (10) for all the 
patient scans.

Despite the importance of registering whole slide images before performing tissue 
analysis, the work on whole slide image registration is quite limited. In this work, we 
tried our best to cite the most recent works on whole slide image registration and to 
compare our algorithm with the state-of-the-art methods.

It should be noted that in the existence of highly deformed regions in the tissue slice, 
it is not possible to propose a global deformation field for the whole tissue. Existing 
patch-based registration methods such as the works by Roberts et al. [10] and Liang 
et al. [9] provide solutions for merging deformation fields acquired for different image 
patches. However, they do not take into account the existence of highly deformed 
regions for which the registration results may be considerably poor. Therefore, merg-
ing deformation fields of the regions of interests in the existence of highly deformed 
regions in the tissue slice needs to be addressed. Future work will address this 
problem. To make the algorithm more deployable, an automatic or semi-automatic 
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method for detection of the ROIs would be desirable. Finally, measures should be 
taken to speed up the proposed method for near real-time applications.

Conclusion
In order to study the tumor tissue in terms of vasculature and cell population, 3D recon-
struction of the sliced and imaged tumor volume is necessary. We proposed a multi-
scale registration algorithm which provides more robust and accurate results compared 
to two linear and nonlinear whole slide image registration algorithms and one patch-
based registration algorithm. The better registration accuracy of our proposed method 
can be attributed to the novel multi-scale attention mechanism that was deployed which 
incrementally focuses registration on a smaller region around the region of interest in 
higher resolutions. Moreover, the proposed method needs only minor parameter tuning. 
Future work includes analysis of the reconstructed tissue volumes by the proposed algo-
rithm to study drug influence on angiogenesis and cell populations in tumors. The next 
section provides details on different steps of the proposed algorithm.

Method
In order to register a user-defined ROI in the whole slide image stack, three steps 
are carried out as follows: (1) removing surrounding artifacts, to remove extra stains 
and artifacts around the tissue, (2) rough alignment of consecutive tissue slides, to 
approximately align the whole tissue in consecutive whole slide images, (3) regis-
tration of the user-defined ROI, to register the ROI marked by the user. Finally, fine 
registration is carried out to improve the registration for the ROI. Figure 9 gives an 
overview of the steps of the proposed method. A flowchart for each step is provided 
in Additional file 1: Figs. 1 and 2.

Removing surrounding artifacts

This step of the registration algorithm is done on a single scale. Extra stains and arti-
facts around the tissue can affect the registration outcome. To remove these artifacts, 
each image ( Ii ) is converted to the gray scale and smoothed using a Gaussian filter 
with a standard deviation of 10 pixels. The smoothed image is then thresholded using 
a threshold value equal to the mean pixel intensity of the image. Since an accurate 
segmentation of the tissue from the surrounding artifacts cannot be achieved merely 
by thresholding, an opening and later a closing morphological operation was applied 
on the output mask from thresholding using a circular kernel of radius 20 pixels to get 
a mask that covers the artifacts and extra stains around the tissue. The final segmenta-
tion mask is then applied to the image to remove the surrounding artifacts. Contours 
in the new image are then detected. The contours which are closer to the center of 
the image and surround the largest area in the image are identified. Extra tissue and 
stains outside the convex hull of the selected contours are removed, resulting in a 
cleaned tissue image ( ̃Ii ). In the next step, rough registration of the whole tissue is 
carried out for consecutive whole slide images.
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Rough alignment of consecutive tissue slides

This step of the registration algorithm is also done on a single scale. In this stage, consec-
utive whole tissue slides are roughly aligned by correcting relative rotations or displace-
ments in the location of the tissue across consecutive virtual slides. The cleaned image, 
Ĩi , is segmented using the multi-resolution Monte Carlo method of Sashida et  al.  [22] 
which performs piece-wise constant segmentation of the Mumford and Shah [23] model 
to yield ĨMS

i  . Mumford-Shah segmentation of the image removes the noise, texture and 
small spatial intensity variations making the image clean and the upcoming registra-
tion robust against inter-slice intensity variations due to differences in stain densities. 
We chose Sashida’s approach for segmentation of the Mumford-Shah model mainly due 
to its outperformance over other approaches such as the work by Song and Chan [24] 
and Bae and Tai  [25] in multi-phase segmentation of images. Next, each consecutive 
pair of Mumford-Shah segmented images are registered independently. For each pair of 
images {ĨMS

i , ĨMS
i+1} , a combination of varying translation (dx, dy) and rotation ( θ ) trans-

formations are applied to the second (moving) image to find the rotation and transla-
tion parameters which make Tθ ,dx,dy[Ĩ

MS
i+1(x, y)] most similar to ĨMS

i (x, y) by optimizing 
the following function:

(1)argmin
{θ ,dx,dy}

∑

x,y

(

Tθ ,dx,dy[Ĩ
MS
i+1(x, y)] − ĨMS

i (x, y)
)2

Fig. 9 The diagram shows an overview of the proposed algorithm for regional registration of whole slide 
images. The Removing surrounding artifacts step removes the extra stains and artifacts around the tissue. The 
Rough alignment of consecutive tissue slides step roughly aligns the whole tissue in consecutive whole slide 
images. Finally, the ROI marked by the user is registered in consecutive slides using a multi‑scale approach in 
the Registration of the user-defined ROI step
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The {θ , dx, dy} triplet which gives the least sum of squared difference is cho-
sen and its corresponding transformation matrix is applied to the moving image: 
I ′i+1 ← Tθ ,dx,dy[Ĩi+1] . These two steps roughly align the images in consecutive image 
slides. Other algorithms which can be used for rough registration of the whole tissue in 
subsequent image slices include landmark-based registration methods or b-spline reg-
istration algorithms. For the same reason mentioned in the Background Section, land-
mark-based methods may not provide a fairly accurate initial registration in case the 
selected landmark is located in a tissue section which experiences severe deformations 
in certain image slices in the WSI stack. Moreover, optimization of the parameters for a 
b-spline transformation technique is computationally demanding. A number of param-
eters specify the appearance and complexity of B-spline curves such as the number of 
control points and their relative location. These values are usually tuned using trial-and-
error procedures. Many algorithms have been proposed for parameter optimization for 
B-spline curve fitting [26, 27]. Parameter optimization gets especially more challenging 
for the case of discontinuous control points  [28] which can occur in the existence of 
major distortions. Therefore, a linear transformation technique was utilized in this step. 
In the next step, the ROI is registered in consecutive image slices.

Registration of user‑defined ROI

Multi-scale registration is utilized at this stage of the registration algorithm. Registra-
tion of the whole tissue provides a fairly accurate initial alignment for further registra-
tion of the ROI. To decrease the adverse influence of tissue deformations outside of the 
ROI, a multi-scale registration approach that incrementally confines its attention to a 
smaller region around the ROI is deployed at this stage. Different steps of this approach 
are explained below:

Multi‑scale attention

Let us define the registered image sequence from the previous step as I ′seq = {I ′1, I
′
2, . . .} . 

A small box around the ROI is defined by the user for the image at its full resolution 
( r = 0 ) as ROIr=0

≡ ROI0 (see ROI0i  in Fig 8). In order to register ROI0 in I ′i and I ′i+1 
image slices, registration is first performed for lower resolutions of the two images. I ′r=k

i  
( ≡ I ′

k
i  ) is denoted as the output image from downsampling I ′i by a factor of 2k . Similarly, 

a downsampled image is generated for image I ′i+1 and is denoted as I ′ki+1 . Registration is 
performed between I ′ki  and I ′ki+1 by considering ROIk only. The same procedure is taken 
for r = {k − 1, k − 2, . . . , 0} in the presented order giving a series of rigid transforma-
tions ( Fr ) as follows:

where SIFTROI (I , J ) performs registration for the specified ROI in the image pair (I,  J) 
using SIFT features and will be explained shortly. The resulting transformations are 

(2)

SIFTROIk

(

I ′
k
i , I

′k
i+1

)

→Fk

SIFTROIk−1

(

I ′
k−1
i , Fk

(

I ′
k−1
i+1

))

→Fk−1Fk

...

SIFTROI0

(

I ′
0
i , F1 . . . Fk

(

I ′
0
i+1

))

→F0 . . . Fk−1Fk
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applied to image I ′0i+1 . The ROI for different image resolutions is defined as follows: If 
(xROI , yROI ) is the center coordinates of ROI0 in I ′0i  , the corresponding center coordinates 
in the downsampled image I ′ki  are calculated as (xROI/2k , yROI/2k) . The ROI ( ROIk ) for 
I ′
k
i  is then extracted with the same width and height as for ROI0 unless the ROI bounda-

ries exceed the image boundaries. In that case, the width and height are adjusted such 
that the ROI stays in the image boundaries. Figure  10 shows the extracted ROI from 
different image resolutions for the manually identified ROI ( ROI0i  ) in the full resolution 
image ( I ′0i  ). The novel difference between the proposed method and the existing multi-
scale registration methods lies in this step, the proposed algorithm confines its atten-
tion to a large region around the original user-defined ROI ( ROI0 ) in the low-resolution 
images and focuses its attention to a smaller region around the user-defined ROI as the 
resolution of the images increase. The multi-scale nature of the algorithm makes it com-
putationally efficient. Next section describes the SIFT function in Eq. 2 which registers 
the ROIs in each resolution.

Registration using SIFT features

Having extracted the ROI ROIk in the low-resolution images I ′ki  and I ′ki+1 , distinctive 
key points are detected in both ROIs using SIFT feature detection algorithm  [14]. 
Spatial coordinates of the detected key points are added to the descriptors of the key 
points and are taken into account for key point matching in the two ROIs. From all 
the identified pairs of SIFT key matches, 8 strong matches are found for the two ROIs. 
If the number of identified matches are less than 8, all the SIFT key matches are 
selected. Since registration is performed locally, a rigid registration is found suffi-
cient. A rigid transformation can be calculated with a minimum of 3 key points per 

image. Therefore, 
(

8
3

)

= 56 different combinations of 3 matches and consequently, 

56 different transformation matrices can be obtained using the 8 selected matches. 
Our experiments show that these combinations provide a sufficiently diverse set of 

Fig. 10 Figure shows the ROI in multiple resolutions (levels 0 to 3 with level 0 referring to the highest 
resolution of the image slices) of two consecutive whole slide images. The user defines the ROI0

i
 for the target 

image in its highest resolution ( I0
i
 ). The ROI in lower resolutions ( ROI1,2,3

i
 ) are defined automatically. Fr refers to 

the best rigid transformation matrix found to align slice i + 1 to slice i in resolution level r of the slices
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transformations from which an accurate registration can often be achieved. All the 
transformations are applied to the previously registered image I ′ki+1 in the Rough 
alignment of consecutive tissue slides Section giving a series of 56 warped images

where Fm is the transformation matrix found by using a unique combination of 3 
matches. From the 56 transformation proposals, the transformation matrix which gives 
the least sum of squared difference in pixel intensity (D) for ROIk in the warped image 
Fm

(

I ′
k
i+1

)

 and the reference image I ′ki  is chosen using the following function:

The best transformation matrix found for resolution k is then scaled up and applied 
to the moving image in the higher resolution I ′k−1

i+1  . This process is repeated for res-
olutions r = {k − 1, k − 2, . . . , 0} in the presented order and the registration for the 
image pair ( I ′i , I ′i+1 ) is finalized by defining the transformation matrix for r = 0 as 
F∗

= F0F1 . . . Fk and applying it to the original moving image: I ′′i+1 ← F∗(I ′i+1) . 
Similarly, registration is performed for the registered image I ′′i+1 and the next 
image in the stack ( I ′′i+1 , I ′i+2 ) aligning the ROI in the entire image stack: 
I ′′seq = {I ′′1, I

′′
2, . . . , I

′′
i+1, I

′′
i+2, . . .} . A diagram of this process is shown in Fig.  10. 

Note that as the algorithm steps through higher resolutions of the images, the SIFT 
key points are extracted from a smaller region around the user-defined ROI. Hence, 
the proposed algorithm stays robust even in the existence of distorted tissue regions 
that are outside of the ROI marked by the user.

Supplementary information
Supplementary information accompanies this paper at https ://doi.org/10.1186/s1285 9‑020‑03907 ‑6.

Additional file 1: Provides detailed flow charts of different stages of the registration algorithm: (1) removing sur‑
rounding artifacts, (2) rough alignment of consecutive tissue slides, and (3) registration of the ROI. Also, examples of 
the best SIFT feature matches for the ROIs in the previous and current slides, and the selected 3 SIFT feature matches 
that resulted in the best alignment of the 2 slides are also provided. Finally, the experimental results are presented 
supporting that different ROI sizes around the blood vessels of interest output reasonable registration results.
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