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a b s t r a c t 

Background and objectives: Tagged MR images provide an effective way for regional analysis of the my- 

ocardium strain. A reliable myocardium strain analysis requires both correct segmentation and accurate 

motion tracking of the myocardium during the cardiac cycle. While many algorithms have been proposed 

for accurate tracking of the myocardium in tagged MR images, little focus has been placed on ensuring 

correct segmentation of the tagged myocardium during the cardiac cycle. Myocardial strain analysis is 

usually done by segmenting the myocardium in end-diastole, generating a mesh from the segmentation, 

propagating the mesh through the cardiac cycle using the output deformation field from motion tracking, 

and measuring strain on the deforming mesh. Due to the imposed tag strips on the anatomy, identifica- 

tion of the myocardium boundaries is challenging in tagged MR images. As a result, there is no guarantee 

that the propagated mesh is annotating the myocardium accurately through the cardiac cycle. Moreover, 

clinical studies indicate that incorrect myocardium annotation can result in overestimation of myocardial 

strains. 

Methods: We introduce a method to improve reliability of strain analysis by proposing a mesh which 

correctly segments the myocardium in tagged MRI by leveraging the available cine MRI segmentation. In 

particular, we generate a series of mesh proposals using the cine MRI segmentation and find the propa- 

gated mesh proposal which gives the most accurate full-cycle myocardium segmentation. 

Results: The mesh selection algorithm was tested on 22 2D MRI scans of diseased and healthy hearts. 

The proposed algorithm provided more accurate whole-cycle myocardium segmentation compared to the 

propagated end-diastolic mesh. Regional myocardium strain was measured for 10 3D MRI scans of healthy 

volunteers using the proposed mesh and the end-diastolic mesh. The measured strain using the proposed 

mesh was more similar to the expected myocardium strain for a healthy heart than the measured strain 

using the end-diastolic mesh. 

Conclusion: The proposed approach provides accurate whole-cycle tagged myocardium segmentation and 

more reliable myocardium strain analysis. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Myocardium tagging is an imaging technique that allows for

he measurement of regional contractile properties of the heart

uscles. The degree and extent of regional myocardial dysfunction

re important factors in diagnosing cardiomyopathy and ischemic

eart diseases [1] . In this imaging modality, parallel dark strips are

mposed on the imaging plane by spatial modulation of the mag-
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etization. The imposed tag strips deform with the underlying my-

cardium during the cardiac cycle. By tracking deformation of the

ag strips on the myocardium through the cardiac cycle, qualitative

nd quantitative evaluation of intra-myocardial deformation, or so-

alled strain analysis, is possible. There are two approaches to my-

cardium strain analysis. In one approach, the myocardium is seg-

ented for a chosen phase (generally end-diastole) in tagged MR

mages and a mesh is generated from the segmentation. Motion

racking is performed next on the tagged MRI sequence and the

esulting deformation field is applied to the generated mesh. Strain

s then calculated from the deforming mesh. Point tracking is an-

ther way to measure myocardial strain. This approach requires the
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Fig. 1. (Left) Myocardium strain analysis using the segment strain analysis module [2] for a tagged MRI short-axis (SAX) slice conducted with two different end-diastolic 

segmentations. The measured radial and circumferential strains using each segmentation have different peak values. (Right) An overview of the contributions in this paper. 

More details are provided in Section 2 . 
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observer to define a few closely located points on the myocardium

and tracks these points through the cardiac cycle using the output

deformation field from motion tracking. Strain is then measured

for the region surrounded by the points. This approach, however,

does not provide strain measurement with the desired spatial res-

olution and across different AHA zones of the left ventricle (LV).

Therefore, strain analysis by mesh propagation is more desirable. 

A reliable myocardium strain measurement requires accurate

myocardium tracking as well as correct segmentation of the my-

ocardium by the deforming mesh. However, structural details, such

as myocardial borders are less clear in tagged MR images because

of the tag strips. This makes it difficult to identify myocardium

boundaries in tagged MR images and to evaluate the deforming

mesh with respect to the identified myocardium boundaries. The

initial segmentation from which the mesh is constructed and prop-

agated to the other phases is critical on strain analysis, as demon-

strated in Fig. 1 (Left), where two different end-diastolic segmenta-

tions are used to measure myocardium strain for the tagged short-

axis slice shown at the top. The radial and circumferential strain

plots for the deforming meshes generated from these two segmen-

tations are also shown. As can be seen, the peak values for the

strain plots are different using these two initial segmentations for

the same image slice. This inconsistency in strain analysis stems

from inaccuracy in full-cycle segmentation of the myocardium by

the generated deforming mesh. Our goal is to introduce a method

which provides a deforming mesh with accurate myocardium seg-

mentation for the whole cardiac cycle in order to increase reliabil-

ity of myocardial strain measurements. 

Different algorithms have been proposed for segmentation of

the myocardium in tagged MR images. Examples include the works

by Montillo et al. [3] , Milles et al. [4] , Qian et al. [5] , Histace

et al. [6] , Garcia-Barnes et al. [7] and Yu et al. [8] in which active

contour models and active shape models are trained with com-

plex features to segment the tagged myocardium. These features

include tag patterns, edges, ridges, mean and standard deviation

of the blood cavity and myocardium, motion information or gradi-
nt vector flow field to segment the tagged myocardium. Denney

t al. [9] utilize two level sets for segmentation of the endocardium

nd epicardium in all the cardiac phases. In the work proposed by

etaxas et al. [10] , images are de-tagged using a Gabor filter bank

nd a deformable model is used to segment the de-tagged images.

hese algorithms rely on a few specific features which together

ay not be able to guide segmentation of tagged myocardium ac-

urately during the cardiac cycle. For instance, tag patterns gradu-

lly fade during the cardiac cycle. Lack of visible edges in certain

RI scans, and low contrast of some tagged MR images are other

roblems which prevent these algorithms from being robust solu-

ions to full-cycle tagged MRI segmentation problem. 

Apart from the works by Camara et al. [11] , Shi et al. [12] and

akram et al. [13] , it is often overlooked that standard steady-state

ree precision (SSFP) cine MR images are also captured along with

he tagged MR images. The cine MR images provide a clear view of

he endocardium and epicardium and there are validated segmen-

ation algorithms for these sequences. By leveraging the standard

ine MR images, one can utilize cine MRI segmentation to generate

esh proposals for tagged MR images and to select the propagated

esh proposal which accurately segments the tagged myocardium.

nother advantage of utilizing cine MRI segmentation is that pap-

llary muscles are clearly distinguishable in cine MRI scans and ex-

sting segmentation algorithms are able to exclude them from my-

cardium segmentation. Consequently, utilizing cine segmentations

an avoid overestimation of myocardial strains due to inclusion of

apillary muscles and trabeculae as reported in the literature [14] .

his is while papillary muscles and trabeculae are hardly distin-

uishable in tagged MR images and are usually included in the

egmentation outputs by tagged MRI segmentation algorithms. 

Camara et al. [11] rigidly register tagged and cine short-axis

lices after de-tagging tagged MR images using steerable pyra-

id image decomposition. In the work by Shi et al. [12] , tagged

mages are de-tagged using a bandpass filter and an average

seudo-anatomical image is created from the de-tagged image se-

uence. The corresponding cine images are then registered to the
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seudo-anatomicalimage and their segmentations are propagated

o the tagged images. De-tagging methods, however, blur the

oundaries in tagged images and consequently decrease the ac-

uracy of the registration algorithms. Makram et al. [13] train a

oupled dictionary on patch pairs of cine and tagged MR images

nd use the trained dictionary for tag removal. The proposed algo-

ithm, however, requires training for different tagging parameters

nd MRI scanner settings. An algorithm which can robustly identify

he tagged myocardium during the cardiac cycle and can propose a

eforming mesh with high segmentation accuracy with respect to

he identified myocardium is desirable. 

. Contribution 

This paper makes two contributions to the tagged MRI my-

cardium strain analysis problem. These contributions are summa-

ized in Fig. 1 (Right) and described below: 

1. Three important features: tag patterns, motion information,

and edges are combined such that they can robustly identify

the myocardium. Unlike previous methods, this combination

is able to identify the myocardium even if the tags are not

visible in which case the edges are distinguishable or when

the edges are not clear which usually happens when they

are modulated by tag patterns. Adding motion information

makes identification of the myocardium more robust as will

be discussed in the following section. This combination is

used by the proposed similarity metric in the next step to

map cine MRI segmentation to tagged MRI sequence. 

2. A similarity metric is introduced to compare the proposed

full-cycle myocardium segmentations for a tagged MRI se-

quence. The proposed metric evaluates the proposed seg-

mentation with respect to the identified myocardium while

giving equal weights to all slices and all phases. Multiple

mesh proposals are generated for a tagged MRI sequence

by leveraging the mapped cine MRI segmentation. From the

generated mesh proposals, deforming meshes are created.

The deforming mesh which segments the myocardium more

accurately during the cardiac cycle is found by the proposed

metric and is used for myocardium strain analysis. 

Our experiments suggest that the selected mesh provides more

imilar strain analysis results to the reported strain curves for

ealthy hearts when tested on MRI scans of healthy volunteers.

etails of the proposed method are provided in the following sec-

ion. 

. Method 

In order to generate mesh proposals for the tagged MRI se-

uence from cine MRI segmentation, the cine MRI segmentation

hould be mapped to the tagged MRI sequence. Assuming that the

ine and tagged MRI sequence are temporally aligned, a number of

hallenges arise in mapping cine MRI segmentation to tagged MR

mages. These challenges include the need to handle existing mis-

lignments among cine short-axis (SAX) slices, among tagged SAX

lices, and between tagged and cine MRI sequences while consider-

ng size and resolution differences of the two sequences. Therefore,

 metric is required for accurate registration of tagged and cine im-

ges. The proposed metric should be able to robustly identify the

yocardium and its boundaries in the tagged MRI and to register

he identified tagged myocardium to the cine myocardium. Fig. 2

ives a summary of how the registration is conducted and how

he proposed similarity metric is used to help with the registration

nd cine-to-tagged segmentation mapping using a myocaridum in-

ex map. The A-labeled boxes describe how the myocaridum index

ap is generated while the B-labeled boxes register the cine and
agged MR images using the myocardium index maps. All these

teps together provide a robust algorithm for accurate mapping of

ine segmentation to tagged MR images. 

The similarity metric is also used to evaluate a proposed de-

orming mesh for the tagged MRI sequence. We will start by ex-

laining the proposed similarity index. Next, we describe how the

ine and tagged MRI sequences are registered and the cine seg-

entation is mapped on tagged MR images using the proposed

etric. We use the mapped cine segmentation to generate a series

f mesh proposals and find the mesh proposal which segments the

yocardium accurately when propagated through the cardiac cy-

le. 

.1. The similaity metric 

The proposed similarity metric takes advantage of three fea-

ures from tagged MR images - namely, tag patterns, motion, and

dge information to identify the myocardium. Each type of infor-

ation is extracted in the order which will be presented and adds

ore details to the results produced from the previous step. 

.1.1. Locating tag patterns 

As one of the most important features for differentiating the

yocardium from other tissues in tagged MR images, tag patterns

re first located in the images through the cardiac cycle by apply-

ng a Gabor filter bank. Gabor filter banks have been recognized

s an effective tool for myocardium localization in tagged MR im-

ges [15] . The bank of Gabor filters is designed considering dif-

erent frequencies, directions, and tag spacings around the original

requency, direction, and tag spacing settings of the MRI scanner.

ll filters in the bank are applied to the input image and the fil-

ers whose parameters best match the local tag pattern in the im-

ge produce higher magnitude responses. By combining parame-

ers of the filters with the highest magnitude responses and ap-

lying the resulting filter to the image, an optimal local response

an be achieved. 

Fig. 2 (A1) shows the result of applying Gabor filter bank to a

agged SAX image with 45 ◦ and −45 ◦ tag strips. The magnitude

esponses shown on the right have higher values where tag strips

ppear in the original tagged image. We generated our Gabor filter

ank following the works by Chen et. al. [15] and Li et al. [16] and

ound the magnitude response as an indicator of the existence of

ag patterns for all the images and all the slices. The Gabor fil-

er bank was generated with orientation angles θ = θint + n 1 × �θ
here the initial orientation angles are θint = π/ 4 , −π/ 4 for 45 ◦

nd −45 ◦ tag modulations, n 1 = 0 , ±1 , ±2 , and minimal angular

ifference of �θ = π/ 18 . With tag spacings ( S ) of 5.27 pixels, the

entral frequencies were defined by u = u 0 + n 2 × u 0 and v = v 0 +
 2 × v 0 where initial central frequencies are u 0 = v 0 = 1 /S = 0 . 1897

nd n 2 = 0 , ±0 . 1 , ±0 . 2 . As mentioned before, the myocardium in

ome images may not have any tag patterns due to tag fading. We

andle this issue by combining the location information of tag pat-

erns in other images and motion information as explained in the

ollowing paragraph. The following step ensures that our metric is

ble to localize the myocardium in the images at all the cardiac

hases and that the similarity metric does not prioritize one phase

ver other phases when assessing a proposed full-cycle segmenta-

ion. 

.1.2. Combining motion information 

In myocardium tagging, tag strips are usually applied over the

eart in diastole. The tag strips deform as the myocardium con-

racts during systole and return to their initial position as the

yocardium relaxes. Due to relaxation of the magnetization vec-

ors, the tag strips fade during the cardiac cycle. The fading oc-

urs much faster in the ventricular blood pool because of rapid
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Fig. 2. Steps carried out to register cine and tagged short-axis (SAX) MR images and to map segmentation of cine MR image slices to tagged MR image slices. (A1) Tag 

patterns are located in all tagged short-axis (SAX) images by applying a Gabor filter bank. The located tag patterns will be used to localize the myocardium in tagged MR 

images through the cardiac cycle. (A2) Combining motion with tag pattern location information. The combined tag and motion information map identifies the myocardium 

more clearly compared to the Gabor magnitude response images in step A1. (A3) Combining edge information with the motion and magnitude response map by performing 

super-pixel segmentation on the original tagged SAX image and applying the myocardium indexing function. (B1) Aligning the cine SAX slices using the method proposed by 

Fadil et al. [21] . (B2) The soft tissue in the chest walls is used to roughly register the LV in the cine and tagged MR images using the algorithm discussed in Section 3.2.2 . (B3) 

The LV in the cine MR images are segmented using the Segment tool [24] version 2.0 R5454. (B4) The cine segmentations are mapped on the tagged images as described in 

Section 3.2 using the proposed similarity metric. 
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motion and mixing of blood in the ventricle, while tag strips fade

slower on the myocardium, pericardial fat, liver, and the soft tissue

in the chest walls. Areas with large magnitude responses suggest

existence of tag strips in those areas in the tagged image. Conse-

quently, large magnitudes can refer to the myocardium as well as

other tissues, such as the soft tissue in the chest walls. In order to

differentiate the myocardium from other tissues with large magni-

tude responses, we took advantage of the fact that the myocardium

moves while other tissue types hardly move during the cardiac cy-

cle. We combined the acquired displacement field from tagged MRI
equence with the magnitude responses using the obtained dis-

lacement field from motion tracking of the heart in tagged MR

mages [7] . 

Using the resulting displacement field, we registered all the

agnitude images in the cardiac cycle to each phase and found

he mean magnitude image for each phase. More specifically, let

s define the magnitude responses for 45 ◦ and -45 ◦ tag strips

s { Mag t 
45 ◦ } T t=1 

and { Mag t −45 ◦ } T t=1 
for a cardiac cycle with T car-

iac phases and the registered magnitude responses to time t k as

 M ag 
t→ t k 
45 ◦ } T t=1 and { M ag 

t→ t k 
−45 ◦ } T t=1 , respectively. Let us also define the
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btained displacement field from time t in the cardiac cycle to the

nd-diastolic phase as { Disp t } T t=1 and the backtracked displacement

agnitude from time t to time t k as {| Disp| t→ t k } T 
t=1 

. Then, the com-

ined motion information and magnitude response ( M 

t k ) for time

 k is calculated as follows: 

 

t k = 

(
1 

T 

∑ 

t 

Mag 
t→ t k 
45 ◦

)
×

(
1 

T 

∑ 

t 

Mag 
t→ t k 
−45 ◦

)
×

(
1 

T 

∑ 

t 

| Disp| t→ t k 

)

(1) 

here × is pixel-wise multiplication of the resulting three

ean images: 1 
T 

∑ 

t Mag 
t→ t k 
45 ◦ , 1 

T 

∑ 

t Mag 
t→ t k 
−45 ◦ , and 

1 
T 

∑ 

t | Disp| t→ t k .

ig. 2 (A2) shows an example of combining motion and magnitude

esponses for a tagged SAX image. The first two images from the

ottom left to the top right show the mean of the registered Ga-

or magnitude responses to time t k for −45 ◦ and 45 ◦ tag strips,

espectively. The last image is the mean of the backtracked dis-

lacement magnitudes to time t k . As the output image suggests,

his task differentiates the myocardium from other tissues more ef-

ectively compared to the resulting magnitude responses in the tag

attern localization step ( Fig. 2 [A1]). The colored regions in the

Segmented tagged SAX slice’ represent different identified super-

ixels and the bright super-pixels in ’Myocardium index map’ show

igh probability of locating LV muscles in those super-pixels. 

.1.3. Combining edge information 

The combined motion and magnitude response outputs a

lurred image with no clear edge information. In order to add

ny existing myocardium boundary information to the combined

otion and magnitude response map, we extract the edge infor-

ation from the original tagged MR images. Extracting the edges

rom the tagged MR images is performed using a super-pixel seg-

entation algorithm [19] with high sensitivity to small intensity

ifferences and weak edges. The super-pixels outputted by the

uper-pixel segmentation algorithm divide the original tagged MR

mage into regions with similar intensity values that are sepa-

ated by the identified edges in the image. Having extracted these

uper-pixels, we utilize the combined motion and magnitude re-

ponse map to measure the probability of myocardium being in

ach super-pixel and assign a high contrast value to the super-

ixels for which a high probability is measured. This task is car-

ied out using the salient object detection algorithm proposed by

heng et al. [20] where the global contrast of each super-pixel

s measured with respect to all the other super-pixels in the im-

ge. Contrast for each super-pixel r k is measured using the inten-

ity histogram in that super-pixel and those of all the other super-

ixels while giving more weight to the neighboring regions and

ess weight to distant regions following the function below: 

I ( r k ) = α( r k ) 
∑ 

r k � = r l 
exp[ −D s ( r k , r l ) /σ

2 
s ] × β( r l ) M r k log (D m 

( r k , r l ) )

(2) 

The intensity histogram is measured from the combined mo-

ion and magnitude response map for each super-pixel. We call

he final contrast map measured for the combined motion and re-

ponse map using this function as myocardium index (MI) map

ince super-pixels with higher contrasts specify regions that have

 higher probability of containing myocardium. D m 

( r k , r l ) is a dis-

ance metric between the two super-pixels r k and r l in the im-

ge. If the combined motion and magnitude response map is con-

idered as a grayscale image, the distance metric is measured as

 m 

(r k , r l ) = 

∑ n k 
i =1 

∑ n l 
j=1 

[
p(I k,i ) p(I l, j ) D (I k,i , I l, j ) 

]
where p ( I k,i ) is the

robability of the i th intensity I k,i in the probability density func-

ion of super-pixel r k with n k different intensity values and D ( I k,i ,

 l,j ) denotes distance between intensity I k,i and intensity I l,j . M r k 
is
he weighted average intensity for super-pixel r k using the proba-

ility density function for super-pixel r k . 

To favor super-pixels with higher average combined motion and

agnitude response compared to their surrounding super-pixels,

he spatial weighting term exp[ −D s (r k , r l ) /σ
2 
s ] increases the effect

f spatially closer super-pixels. D s ( r k , r l ) is the spatial distance be-

ween super-pixel r k and r l and is measured as the Euclidean dis-

ance between their centroids. Parameter σ s limits the effect of

patial distance weighting. The value of σ 2 
s was set to 0.4 with

ixel coordinates normalized to [0,1]. β( r l ) is the number of pix-

ls in super-pixel r l to emphasize contrast to bigger super-pixels.

 center bias α(r k ) = exp (−7 d 2 
k 
) is imposed to favor super-pixels

hat are spatially closer to the center coordinates of the LV, where

 k is the average distance between pixels in region r k and the

V center. In this way, moving super-pixels with tag patterns and

loser to the center of the LV are given higher myocardium index

alues. 

The contrast of the combined motion and magnitude response

ap is enhanced by passing it through an upward intensity ramp-

ng filter with a fixed gamma value of 0.25 before feeding it to the

yocardium indexing function (see Fig. 2 [A3]). The main goal is

o decrease the measured contrast D m 

( r k , r l ) between regions with

igh average value for motion and magnitude response and there-

ore to assign similar myocardium index values to these super-

ixels. 

The myocardium indexing function was applied on the motion

nd magnitude response images and the original tagged images

or all the slices and all phases to generate the myocardium in-

ex maps. Due to high sensitivity of the super-pixel segmentation

lgorithm to intensity differences and weak edges and existence

f noise in the image, the segmentation output is made up of very

mall super-pixels. The myocardial indexing function highlights the

uper-pixels which belong to the myocardium. Fig. 2 (A3) shows

he result of applying a super-pixel segmentation algorithm on a

agged SAX image acquired on a Siemens Trio scanner. The pa-

ameters for the super-pixel segmentation algorithm and the my-

cardium indexing function were tuned to ensure a segmentation

ith sufficient sensitivity and myocardium contrast. 

Finally, the proposed similarity metric measures two parame-

ers on the resulting myocardium index maps: the first parame-

er measures the gradient of the area enclosed by the proposed

egmentation from the surrounding area, which is found by sam-

ling intensities on the perpendicular lines to the endocardium

nd epicardium annotations. The second parameter adjusts the

enter of the segmentation on the blood pool by finding the lo-

ation with the highest centricity for the corresponding segmenta-

ion. The similarity metric is formulated as follows: 

 ( seg ) = 

∑ 

slices 

∑ 

phases 

E gradient (seg) + 

∑ 

slices 

∑ 

phases 

E centricity (seg) (3)

Let endocardium segmentation be denoted by the n 2D points

n the set X = ( X 1 , X 2 , . . . , X n ) and the epicardium segmentation be

efined by the n 2D points in the set Y = ( Y 1 , Y 2 , . . . , Y n ) . If the or-

hogonal vector to the endocardium annotation at point X i is de-

ned as dX i and the orthogonal vector to the epicardium annota-

ion at point Y i is defined as dY i , then the gradient energy is de-

ned as: 

 gradient (seg) = 

∑ 

i ∈{ 1 ,n } 

∑ 

k 

(X i + k × dX i ) − (X i − k × dX i ) 

+ 

∑ 

i ∈{ 1 ,n } 

∑ 

k 

(Y i − k × dY i ) − (Y i + k × dY i ) , (4) 

here k is the number of sampled points on the orthogonal vec-

ors. The centricity energy is measured using the following func-

ion where the mean radius of the endocardium (epicardium) seg-

entation for each slice is denoted as avg endo ( avg epi ) and circle r 
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p  
refers to a circle at the center of the segmentation with radius r ,

then : 

E centricity = A a v g epi 
− A a v g endo 

, (5)

where 

A r = 

∑ 

p ∈ circle r 

MI (p) , (6)

and p is a pixel coordinate in the myocardium index map. 

3.2. Cine-to-tagged segmentation mapping 

Although both cine and tagged MR images are acquired from

the same SAX planes, there are different types of spatial misalign-

ment in these two sequences due to patient repositioning as well

as inconsistencies in breath-hold position. More specifically, (1) the

cine and tagged image sequences are generally not aligned, (2) the

cine SAX slices are not aligned with respect to each other, and (3)

the tagged SAX slices are not aligned with respect to each other.

We handle these spatial misalignments following the three steps

described below: 

3.2.1. Long-axis alignment of cine SAX slices 

In the first place, the LV in cine SAX slices is aligned us-

ing the algorithm proposed by Fadil et al. [21] . In this algorithm,

the LV is automatically located in each cine SAX slice and the

slices are aligned using the LV location information. Another ap-

proach to align cine SAX slices is the method proposed by Villard

et al. [22] in which the long-axis view of the heart is utilized to

align the slices. Having aligned the cine slices, a cine segmenta-

tion algorithm is applied to the cine SAX slices. While any seg-

mentation algorithm can be used at this stage, we took advantage

of the automatic segmentation algorithm proposed by Tufvesson

et al. [23] which is implemented in the Segment tool [24] version

2.0 R5454. This segmentation will be mapped to the tagged MR

images as will be explained in Section 3.2.3 . 

3.2.2. Chest-tissue-registration of tagged and cine images 

In this step, we target the misalignment between tagged

and cine SAX slices which occurs due to patient reposition-

ing. The tag patterns on tagged images make common regis-

tration algorithms for medical images, such as the well-known

Demons algorithm [25] or mutual-information-based registration

algorithms [26] ineffective to register tagged and cine images. Con-

sequently, a different strategy is required to register these two se-

quences. The soft tissue in the chest walls is a useful guide for

registering tagged and cine images as it hardly deforms in subse-

quent MRI acquisitions. We adopted a multi-scale low-rank matrix

decomposition method proposed by Peng et al. [27] for register-

ing tagged and cine SAX slices while taking advantage of constant

visibility of the soft tissue in the chest walls. The main advantage

of this method is its ability to handle corruptions, small additive

noise, and large occlusions in the input images; in our case the

tagged strips in tagged MR images. 

This technique requires a batch of images which are considered

as the columns of a matrix. A set of transformations is found, one

for each image, to minimize the rank of the matrix. In order to

prepare a batch of images to register a tagged SAX MR image to

its corresponding cine SAX MR image, the cine SAX images around

each time point t k in time are registered to the cine SAX image

at time t k using b-spline registration [28] in order to remove any

complex deformations. These cine images (fixed images) together

with the tagged SAX image at time t k (moving image) are consid-

ered as the batch of images that are registered using low-rank de-

composition. An image matrix is made from the uncropped cine

and tagged images that contain the soft tissue in the chest walls
hrough the cardiac cycle which provide structure and guide the

ransformation in order to achieve suitable registration results. Our

lgorithm is defined to transform and register the tagged SAX im-

ge to all the other cine SAX images in the matrix iteratively while

eeping the cine images intact. This task is carried out to register

agged SAX image for a randomly selected phase to its correspond-

ng cine SAX image and the resulting transformation is applied to

ll the images in the tagged SAX slice. 

Registration of the soft tissue in the chest walls does not guar-

ntee that the tagged and the cine LV will also be well-registered.

hat is mainly due to inconsistencies in breath-hold position while

cquiring tagged and cine images which refers to the difference in

he amount of air that is held in the lungs while the images are

cquired. This problem is handled in the next step. 

.2.3. Tagged-to-cine LV registration and segmentation mapping 

The previous steps roughly align the LV in the cine and tagged

RI sequence and allow us to crop a region around the LV in the

agged MRI slices using the same bounding box used for the cine

RI sequence. In the next step, a brute-force search is carried out

n this cropped region on each tagged SAX slice by sliding the

orresponding cine segmentation around and finding the location

hich maximizes the similarity metric described in Section 3.1 .

aving found the best location, the tagged SAX slice was adjusted

uch that the cine segmentation falls on the located optimal posi-

ion. After registering the tagged SAX slices to their corresponding

ine SAX slices in this way, the cine segmentation is mapped to

he tagged slices. 

The previous steps register tagged and cine SAX slices and pro-

ide full-cycle segmentation for tagged SAX images using the in-

roduced similarity metric. The similarity metric is next used to

elect the deforming mesh with the most accurate full-cycle my-

cardium segmentation from a series of deforming mesh propos-

ls. As mentioned before, accurate segmentation is necessary for a

eliable regional strain analysis of the myocardium. 

.3. Improved myocardium strain analysis 

Regional strain analysis allows for qualitative and quantitative

valuation of intra-myocardial deformation and is an effective met-

ic for diagnosing ischemic heart disease. This analysis is usually

erformed by (1) segmentation of the myocardium in tagged MR

mages for one specific cardiac phase, (2) registration of the tagged

R images in that phase to the images in the other phases, and

3) propagating the mesh generated from the segmentation to the

ther phases using the resulting displacement field from the regis-

ration. A reliable myocardium strain analysis requires both correct

yocardium tracking as well as accurate annotation of the my-

cardium boundaries during the cardiac cycle. However, the afore-

entioned strategy to measure the strain makes accuracy of my-

cardium segmentation highly dependent on the initial mesh cho-

en to propagate to the other phases. 

The end-diastolic mesh is generally the chosen mesh to prop-

gate to the other phases for strain analysis. While many algo-

ithms have been proposed and evaluated for motion tracking

n tagged MRI sequences, such as the TDFFD registration algo-

ithm [17] , there has been no means to evaluate the deforming

esh in terms of accuracy in tagged myocardium segmentation. As

 result, there is no guarantee that the propagated mesh is anno-

ating the myocardium correctly during the cardiac cycle. Having

 full-cycle segmentation for the tagged MRI sequence using the

ine-to-tagged segmentation mapping algorithm and a similarity

etric to evaluate a proposed segmentation, a more accurate de-

orming mesh in terms of segmenting the myocardium can be pro-

osed. This aim is achieved by generating a mesh for each cardiac-

hase segmentation and propagating this mesh to the other phases
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Table 1 

Values assigned to the parameters for each algorithm for our dataset and the cMac challenge 

2011 dataset [18] . The parameter values were either set to the values advised in referred publi- 

cations or tuned by applying the algorithm on randomly chosen images from the dataset. 

Algorithm Parameter Our dataset cMac dataset 

Gabor filter bank θ int π/ 4 , −π/ 4 0, π /2 

�θ π /18 π /18 

TDFFD registration control points 5 4 

number of samples 10,000 10,000 

λ 0.1 0.1 

Super-pixel segmentation σ for Gaussian filter 0.2 2 

intensity threshold 30 0 

min component size 5 5 

Upward intensity ramping γ 0.25 0.25 

Myocardium indexing σ 2 
s 0.4 0.4 

similarity metric k { 0 , . . . , 5 } × Reso. { 0 , . . . , 5 } × Reso. 

Brute force search box size 60 × 60 pixels 60 × 60 pixels 

spatial interval 3 pixels 3 pixels 
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Table 2 

Error measurement for the mapped cine MRI segmentation by 

the cine-to-tagged segmentation mapping algorithm compared 

to the reference manual segmentation. Error measurements are 

carried out on the dataset ( n = 22 ) for the final frame (FF) 

and the end-systolic (ES) phase using dice similarity coefficient 

(DSC) and point-to-curve distance (P2C). 

(FF & ES) DSC P2C (mm) 

Endocardium basal 0.88 ± 0.04 1.88 ± 0.57 

Endocardium mid-ventricular 0.83 ± 0.08 2.23 ± 0.85 

Endocardium apical 0.75 ± 0.10 2.34 ± 0.85 

Epicardium basal 0.95 ± 0.03 1.28 ± 0.64 

Epicardium mid-ventricular 0.93 ± 0.05 1.64 ± 0.94 

Epicardium apical 0.91 ± 0.05 1.76 ± 1.01 

Differences are expressed as mean ± std. A perfect match with 

the manual reference would give a DSC value equal to 1 and a 

P2C value equal to 0. FF = final frame, ES = end-systole. 
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a  
sing the acquired displacement field from tagged MRI sequence.

he mesh proposal which provides the most accurate myocardium

egmentation is then selected by measuring and comparing the

imilarity metric for all the propagated mesh proposals. Assuming

here are T mesh proposals for strain analysis, where T is the num-

er of phases within each cardiac cycle, the best propagated mesh

s defined as the one for which the measured similarity ( Eq. 3 ) is

aximized. 

In the next section, we will evaluate our proposed method us-

ng our own dataset and the available dataset from the cardiac mo-

ion analysis challenge 2011. 

. Validation 

In order to evaluate the proposed method, we measured the

ccuracy of the proposed myocardium segmentation for the se-

ected deforming mesh versus the deforming end-diastolic mesh

n Sections 4.1 and 4.2 , respectively. Section 4.3 analyses the re-

ults of strain analysis using the selected deforming mesh for 10

ealthy subjects from the cMac dataset. 

.1. Cine-to-tagged-segmentation mapping accuracy 

We applied our cine-to-tagged segmentation mapping algo-

ithm on 12 MRI scans of patients with degenerative mitral valve

egurgitation (DMR) and 10 MRI scans of healthy subjects. Both the

MR and healthy cases were scanned in 2D by a 3T Siemens Trio

canner in 11—20 heartbeats per slice. A series of 10—14 SSFP cine

nd tagged SAX slices were acquired for each case with 8 mm slice

hickness and slice spacing of 9.6 mm. All sequences comprised

5 cardiac phases with spatial resolutions in the range of 1.17—

.77 mm for cine and 1.33—2.56 mm for tagged images. All tagged

R images went through 45 ◦ and −45 ◦ modulation with 8 mm tag

pacing. The tagged MRI sequences covered the whole cardiac cy-

le and were temporally aligned to their corresponding cine MRI

equence. Steps (A1), (B2), and (B4) in Fig. 2 were implemented

n Matlab programming language, while steps (A2), (A3), and (B1)

ere implemented in C++ programming language. Step (B3) was

erformed using the Segment tool [24] and the C++ implemen-

ation of the TDFFD registration algorithm [17] was utilized. Four

ifferent scales were defined for the chest-tissue-registration algo-

ithm with a maximum of 30 iterations for each scale and a rel-

tive change threshold of 1 e − 5 . Motion tracking was performed

sing the TDFFD registration algorithm backwards in the cardiac

ycle with a resolution of 5 control points in each dimension for

he b-spline velocity grid, 10 0 0 0 samples, and λ weight of 0.1. The

hreshold value, the σ for the Gaussian filter, and the minimum

omponent size were set to 30, 0.2, and 5, respectively, for the
uper-pixel segmentation algorithm. The spatial distance limiting

igma σ s was set to 0.4 for the myocardium indexing function.

n upward intensity ramping function with γ = 0 . 25 was gener-

ted and applied on the combined motion and magnitude response

ap before applying the myocardium indexing function. A range of

 0 , . . . , 5 } × Resolution was defined for the k in the gradient energy

unction ( Eq. (4) ). Brute-force search was carried out for segmenta-

ion mapping in a 60 × 60 pixels window with a step-size of 3 pix-

ls. 

In both our dataset and the cMac dataset that we will work on

ater, the tagged MRI sequences covered the whole cardiac cycle

hereas the number of time frames within the cardiac cycle could

e different. When a difference in the number of time frames in

he tagged and cine MRI sequences were detected, the tagged MRI

equence was down- or up-sampled using the segment tool [24] to

atch the number of time frames in the corresponding cine MRI

equence. Temporal alignment between the cine and tagged MRI

equences was assumed in the proposed algorithm. In case of tem-

oral misalignment, the meta-tag describing the trigger time for

cquisition of the corresponding frame can be found in the Dicom

eader and can be used to temporally align the two sequences

imilar to the work by Shi et al. [12] .In case the tagged MRI se-

uence does not cover the whole cardiac cycle, only the cine MRI

rames that are acquired in the same partial cardiac cycle as the

agged MRI sequence will be considered for segmentation mapping

nd the rest of the pipeline stays intact. 

Table 1 summarizes these parameter values for this dataset

third column). We will explain in the last paragraph in

ection 4.3 how these values were selected. Table 2 shows the

ccuracy of the segmentation mapping algorithm compared to



8 M. Paknezhad, M.S. Brown and S. Marchesseau / Computer Methods and Programs in Biomedicine 184 (2020) 105128 

Fig. 3. Three examples of cine-to-tagged MR image segmentation mapping (blue) for two patients with degenerative mitral valve regurgitation (DMR), and a healthy case 

(Healthy) at the final frame (FF) and the end-systole (ES). Also shown is the manual segmentation (green) for these cases. One can see that cine-to-tagged segmentation 

mapping is a good strategy to handle tag fading and poor visibility of myocardial borders (red boxes). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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a  
manually segmented tagged MR images by an expert for the final

frame (FF) and the end-systolic (ES) phase using the dice similar-

ity coefficient (DSC) [29] and point-to-curve distance (P2C) [30] .

The measured DSC values for all slice sections and for both en-

docardium and epicardium were higher than 0.80 except for the

apical endocardium segmentations, and the P2C error measure-

ments were less than 2 mm except for the mid-ventricular and api-

cal endocardium. The mean P2C measurement for all slice sections

and for both endocardium and epicardium is less than 2.34 mm.

Fig. 3 shows three examples of cine-to-tagged segmentation map-

ping (blue) and the manual segmentation (green) for two DMR

cases and one healthy case. It is important to mention that as

our later measurements of intra-observer variability in manual seg-

mentation of tagged MR images in Section 4.2 imply, the experts

are not confident in their manual segmentation and often guess-

ing is involved in the segmentation process for tagged MR images.

Therefore, many readers may disagree with the manual segmen-

tations (green line) in Fig. 3 . However, one can say that a close

correspondence can be seen between the mapped cine and man-

ual segmentations and the mapped cine segmentations are seen to

be fairly well-aligned on the tagged heart during the cardiac cycle

despite tag fading and poor visibility of myocardial borders (see

red boxes). This justifies our opinion that mapping myocardium

segmentation from cine MRI sequences in which myocardium is

clearly visible is a more reliable strategy for annotating the LV in

tagged MRI sequences since it reduces the guessing factor from the

tagged MR image segmentation. 

4.2. Myocardium segmentation accuracy for the proposed mesh vs. 

end-diastolic mesh 

We used the same dataset to evaluate accuracy of myocardium

segmentation for the selected deforming mesh by our algorithm.

The TDFFD algorithm was used for motion tracking similar to the

analysis on segmentation mapping accuracy. The mesh propos-

als were propagated using the resulting displacement field from

motion tracking. The best deforming mesh was selected by the
roposed algorithm and myocardium segmentation was evaluated

or the selected deforming mesh and the deforming end-diastolic

esh. Fig. 4 shows examples of the segmentation by the selected

eforming mesh compared to the segmentation by the deform-

ng end-diastolic mesh for both DMR and healthy cases. For case

MR1, for instance, the endocardium for the proposed mesh is

lose to the blood pool. As a result, there is no missing muscle

hickness even at end-systole when the tags are blurred compared

o the segmentation by the end-diastolic (red) mesh. 

Tables 3 and 4 compare accuracy of endocardium and epi-

ardium segmentation by the proposed mesh with manually seg-

ented tagged MR images by an expert for the FF and ES phase

sing DSC and P2C distance. Also shown is the intra-observer

ariability (difference between manual segmentation performed

wice) as the best possible accuracy. The tables indicate that for

oth endocardium and epicardium, the segmentation by the se-

ected deforming mesh is more similar to the manual segmenta-

ion compared to the segmentation by the deforming end-diastolic

esh. For basal endocardium, for example, the myocardium seg-

entation error measurements for the selected deforming mesh

re DSC = 0.86 ± 0.04 and P2C = 2.17 ± 0.71 mm, whereas these

easurements for the end-diastolic mesh are DSC = 0.81 ± 0.06

 p < 0.001) and P2C = 2.80 ± 1.00 mm ( p < 0.01). The errors be-

ween the second observer segmentation and the reference manual

egmentation are DSC = 0.91 ± 0.02 and P2C = 1.38 ± 0.30 mm for

he basal endocardium, which are not significantly different from

he errors for the selected deforming mesh. Once cine segmenta-

ion, Gabor filter magnitude responses and the deformation field

rom myocardium tracking are provided, the algorithm takes ap-

roximately 13 min when executed on a personal computer with

7 2600 CPU @ 3.40 GHZ and 8GB RAM for a MRI scan with 13

ine and tagged SAX slices and 25 cardiac phases. 

.3. Regional strain analysis on cMac dataset 

In order to analyze the performance of our method on strain

nalysis results, we tested our mesh selection algorithm on
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Fig. 4. Three examples of myocardium segmentation for the selected deforming mesh by our algorithm (green) for two cases with degenerative mitral valve regurgitation 

(DMR 1, 2) and one healthy case (Healthy 1) at the final frame (FF) and the end-systole (ES). Also shown is the myocardium segmentation by the deforming end-diastolic 

mesh (red) which is commonly used for strain analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Table 3 

Myocardium segmentation error measurement for the selected deforming mesh (second column) and the 

deforming end-diastolic mesh (third column) compared to the intra-observer variability (fourth column). Er- 

ror measurements are carried out against manual segmentation (ground truth segmentation) on the dataset 

( n = 22 ) for the final frame (FF) and the end-systolic (ES) phase as dice similarity coefficient (DSC). 

Dice similarity coefficient Proposed mesh End-diastolic mesh Intra-observer variability 

Endocardium basal ∗∗∗ 0.86 ± 0.04 0.81 ± 0.06 0.91 ± 0.02 

Endocardium mid-ventricular ∗∗∗ 0.81 ± 0.08 0.76 ± 0.10 0.86 ± 0.06 

Endocardium apical ∗∗ 0.71 ± 0.12 0.63 ± 0.14 0.78 ± 0.11 

Epicardium basal ∗∗ 0.92 ± 0.02 0.91 ± 0.03 0.95 ± 0.01 

Epicardium mid-ventricular ∗∗∗ 0.92 ± 0.04 0.89 ± 0.05 0.95 ± 0.02 

Epicardium apical ∗ 0.89 ± 0.06 0.85 ± 0.08 0.92 ± 0.03 

∗ , ∗∗ , and ∗∗∗ indicate that myocardium segmentation for the selected deforming mesh is significantly better 

than myocardium segmentation for the deforming end-diastolic mesh with p -values less than 0.05, 0.01, 

and 0.001, respectively. 

Table 4 

Comparison between myocardium segmentation for the selected deforming mesh (second column) and 

the deforming end-diastolic mesh (third column) compared to the intra-observer variability (fourth col- 

umn). Error measurements are carried out against manual segmentation (ground truth segmentation) on 

the dataset ( n = 22 ) using point-to-curve distance (P2C) for the final frame (FF) and the end-systolic (ES) 

phase. 

Point to curve distance Proposed mesh End-diastolic mesh Intra-observer variability 

Endocardium basal ∗∗ 2.17 ± 0.71 mm 2.80 ± 1.00 mm 1.38 ± 0.30 mm 

Endocardium mid-ventricular ∗ 2.41 ± 0.90 mm 2.88 ± 1.11 mm 1.86 ± 0.70 mm 

Endocardium apical ∗∗ 2.57 ± 1.04 mm 3.44 ± 1.40 mm 1.91 ± 0.73 mm 

Epicardium basal ∗ 1.89 ± 0.54 mm 2.10 ± 0.76 mm 1.18 ± 0.23 mm 

Epicardium mid-ventricular ∗∗ 1.97 ± 0.84 mm 2.43 ± 1.19 mm 1.19 ± 0.30 mm 

Epicardium apical ∗ 2.06 ± 1.03 mm 2.69 ± 1.25 mm 1.43 ± 0.41 mm 

∗ and ∗∗ indicate that myocardium segmentation for the selected deforming mesh is significantly better 

than the myocardium segmentation by the deforming end-diastolic mesh with p -values less than 0.05 and 

0.01, respectively. 

1  

d  

v  

q  

w  

g  

t  

o  

=  

t  

T

1  
0 randomly selected healthy volunteers from the cMac 2011

ataset. The dataset consists of 3D tagged MRI scans of healthy

olunteers together with their corresponding 2D cine SSFP MRI se-

uence acquired using a 3T Philips Achieva System. All cine images

ere acquired during breath-holds of approximately 15 s and were

ated to the vector ECG. The 3D tagged MRI sequences were ob-
ained in three sequential breath-holds acquisitions in each orthog-

nal direction. The tag distance was set to 7 mm with flip angle

 19 − 25 ◦. Spatial resolution of the tagged images is 0.96 mm and

heir temporal resolution is in the range of 21—38 cardiac phases.

he cine scans consist of images with spatial resolution of 1.15—

.25 mm and all the sequences comprise 30 cardiac phases. The
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Fig. 5. (Left) Longitudinal (LONG), circumferential (CIRC), and radial (RAD) strain curves for volunteer V6 for our selected deforming mesh plotted as a function of time 

(normalized by one heart period) and the same plots for the UPF challenger in cMAC 2011. The curves show the average strain across 12 AHA zones (corresponding to 

basal and mid-ventricular regions). (Right) Strain plots for septal and lateral sections of the left ventricle for the UPF challenger (blue line) and the proposed deforming 

mesh (red line) plotted as a function of time (normalized by one heart period) for volunteers V10, V14, and V15. The strain curves are not post-processed or smoothed. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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dataset and the cMac dataset the orientations were fixed for all 
cine MRI sequences were down- or up-sampled using the segment

tool [24] to match the temporal resolution of their corresponding

tagged MRI series and was segmented using the segment tool [24] .

To register the cine segmentation to the 3D tagged MRI sequence,

the corresponding tagged image planes from the 3D tagged MRI

sequence were extracted and used to map the cine segmentation

to the tagged images using the proposed algorithm. After the cine

segmentations were successfully mapped to the tagged MRI slices,

these segmentations were used to generate 3D mesh proposals. T

mesh proposals were generated where T is the total number of

cardiac phases for the subject. Motion tracking was performed on

the 3D tagged MRI sequence and the measured displacement field

was applied to the generate mesh proposals to give us 3D mov-

ing meshes. similarity was measured for the deforming meshes on

the tagged SAX MRI sequences which were sliced out by the cor-

responding cine SAX slices and the best deforming mesh proposal

was selected. 

Finally, 3D strain analysis including longitudinal, radial and cir-

cumferential strain analysis was performed using the selected de-

forming mesh on the 3D tagged MRI sequence. We compared our

strain analysis results with those of the UPF challenger in cMac

2011 [18] . The TDFFD registration algorithm was used for both

cases, while the mesh to propagate was different. The UPF chal-

lenger uses a left ventricular model which is deformed manu-

ally to match the manual segmentation of the end-diastolic phase

in cine SAX slices. Fig. 5 (Left) shows the strain curves averaged

across 12 AHA zones (corresponding to basal and mid-ventricular
egions) as a function of time for our proposed deforming mesh

nd the UPF challenger’s results for volunteer V6. Our strain curves

how more similar peak values to the reported measurements by

oore et al. [31] for healthy volunteers. According to their mea-

urements on healthy hearts, the peak values for the strain curves

hould reach up to 45% for radial strain, −20% for circumferen-

ial strain, and −16% for longitudinal strain. Our strain curves also

onverge better to zero at the final frame, and all regions contract

ore synchronously compared to the UPF challenger’s results us-

ng the deformed LV model. More strain quantification results are

rovided for volunteers V10, V14, and V15 for our proposed mesh

red line with plus signs) and the UPF challenger (blue solid line)

n Fig. 5 (Right). We averaged the strain curves along the septal

all, where the quality of the myocardium is higher in the ac-

uired images, and the lateral wall, where the myocardium suffers

rom artifacts due to out-of-region effect and interference with the

urrounding structures. As shown in Fig. 5 (Right), strain analysis

sing the selected deforming mesh usually outputs more similar

eak values to the reported measurements by Moore et al. [31] and

onverges to zero better. 

The fourth column in Table 1 summarizes the parameter val-

es that were used for this dataset. We tried to fix the parameter

alues for all the experiments on both our dataset and the cMac

ataset. The value for orientation angle ( θ int ) for the Gabor filters

ank depends on the orientation of the applied tags on the MRI

mages and is specified for each scanned image sequence. For our
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he scanned subjects and were set to {−π
4 , 

π
4 } and { 0 , π2 } , respec-

ively. We used the same λ value, and number of control points

pecified in the manuscript for the cMac dataset ( λ = 0 . 1 , 4 con-

rol points) by Craene et al. [17] The same λ value was used for the

xperiments on our dataset, but we increased the number of con-

rol points to 5 to handle the challenging problem of estimating a

D displacement field for the 2D tagged MRI sequences from the

ctual 3D movement of the LV. The number of samples were set to

round 15% percent of the total number of voxels for both datasets

s suggested by the authors. Different values for the threshold and

he standard deviation ( σ ) were tested for the Gaussian filter for

andomly sampled tagged MR images from the two datasets to get

mages with sufficiently reduced noise and to make sure that the

dentified super-pixels are not too small. The identified values were

xed for all the subjects in each dataset. γ for the upward ramping

unction was set to 0.25 for both datasets to slightly enhance the

ontrast of the combined motion and magnitude response images.

ll the other parameter values were adjusted to achieve a high ac-

uracy while preventing the proposed algorithm from being very

low. These values were kept fixed for both datasets. This explana-

ion is added to validation section. 

. Discussion 

Our algorithm provides full-cycle segmentation for the tagged

RI sequence and excludes papillary muscles from the segmen-

ation. The proposed algorithm considers all the frames in the

ecision-making process for aligning the cine and tagged MR im-

ges. The mean distance error measurement for the proposed al-

orithm and expertsâ segmentations is less than 2.57 mm for our

ataset consisting both healthy cases and patients suffering from

egenerative mitral regurgitation (DMR). It is important to point

hat manual segmentation for tagged MR images is also found to

e challenging and the measured inter-observer-variability is on

verage more than 1.19 mm. 

The distance error measurement between the segmented con-

our by the proposed algorithm by Montillo et al. [3] for tagged

R images and the expert segmentation is less than 3 pixels for

V and RV epicardium for 83% of the cases and less than 3 pixels

or LV endocardium for 59% of the cases on tagged MR images with

ingle tag lines and all the frames within the cardiac cycle. Histace

t al. [6] propose a segmentation algorithm for tagged MR images

ith double tag lines ( ± 45). Their algorithm performs segmenta-

ion for frames selected from the systolic phase only and propa-

ates the segmentation to the other frames using motion tracking.

arcia-Barnes et al. [7] perform segmentation for tagged MR im-

ges with double tag lines ( ± 45) for the End-diastolic phase only.

ian et al. [5] perform tagged MRI segmentation for images with

ingle tag orientations: 0, +45, -45, or 90. However, their dataset

as higher quality compared to the standard tagged MRI sequences

ere tags fade in later frames of the cardiac phase. The work by

ang et al. [8] does not perform segmentation for the 1st and

nd frame of the tagged cardiac cycle where the LV is obscured

y strong tag lines and segments the 3rd to the 20th frames for

ases consisting 20 frames in the whole cardiac cycles. Metaxas

t al. [10] do segmentation for images with vertical single tagging

or 7 healthy subjects. All these methods do not take any steps to

xclude papillary muscles in the LV segmentation. 

Camara et al. [11] propose an algorithm for shift correction be-

ween tagged and cine MRI sequences. In this way cine segmenta-

ion can be mapped to the tagged MRI sequence. However, unlike

ur algorithm, the proposed algorithm utilizes the ED frame only

or shift correction. Shi et al. [12] de-tag images in three 3D tagged

RI sequences, register the de-tagged 3D MR image sequences to

enerate a 4D pseudo-anatomical image and finally register the

D cine images to the 4D pseudo-anatomical image. Similar to
ur work, this algorithm considers all the frames while register-

ng the cine and tagged slices and excludes papillary muscles since

t maps cine segmentation to the corresponding tagged MRI se-

uence. However, a 3D tagged image sequence is required to utilize

his algorithm and edge information is removed in the de-tagging

rocess which may adversely affect the registration outcome. The

istance error measurements between the proposed segmentation

nd the expert segmentation for these methods, when reported,

as in the range of more than 1 pixels and less than 3 pixels. 

The spatial resolution of MR images in the previous studies and

ur study is not consistent. This difference affects the performance

utcomes of the proposed algorithm as well as the previously pro-

osed methods. As a result, we provide the mean distance error

n millimeters for these algorithms together with the spatial reso-

ution of MR images (where provided) that were used to evaluate

he algorithm in the following. In millimeters, Qian et al. [5] re-

ort mean Euclidean distance error of less than 2 mm. Camara

t al. [11] report mean Euclidean distance error of less 2.04 mm for

R images with spatial resolution of 0.78 mm. The algorithm pro-

osed by Garcia et al. [7] provides a mean Euclidean distance error

elow 2.48 mm for basal, mid-ventricular, and apical regions for

R images with spatial resolution of 1.24 mm. Shi et al. [12] report

edian distance error of 1.04 mm for endocardium surface tracking

nd 0.76 mm for epicardium distance tracking for MR images with

patial resolution of 1 mm. 

Previously proposed algorithms for tagged myocardium seg-

entation depend on either not generally reliable features or

t most two out of the three utilized features in this paper,

amely, tag patterns, motion, and edge information. Motion is

he most reliable and always existing feature which Garcia-Barnes

t al. [7] used together with Gabor filter magnitude responses to

egment tagged myocardium. Their proposed algorithm, however,

uffers from the blurred-boundaries problem. By adding edge in-

ormation to the proposed method by Garcia-Barnes et al. [7] , we

ere able to robustly identify the myocardium in the whole car-

iac cycle with detailed myocardium boundaries. 

Analysis is performed for both subjects with 2D tagged MRI se-

uences using our dataset and subjects with 3D tagged MRI se-

uences using the cMac dataset. Therefore, the experiments per-

ormed on the cMac dataset estimate both the radial and longi-

udinal motion of the LV and this information is taken into ac-

ount while combining motion information with the magnitude re-

ponses acquired by applying the Gabor filters bank. For the 2D

agged MRI sequence, the estimated motion from the tagged MRI

equence in the cardiac cycle is not an accurate estimation of the

ongitudinal and radial movement of the LV. One can say that the

stimated displacement is a rough 2D approximation of the actual

D movement that the LV experiences. However, since the cine

RI sequence is scanned from the same LV and from the same

lanes, both sequences are experiencing approximately the same

ongitudinal and radial motion. Consequently, the estimated dis-

lacement field can be used to register the magnitude responses of

agged images from different time frames to the target frame and

se the proposed similarity metric to map cine segmentation of an

mage slice to the corresponding slice in the tagged MRI sequence.

Ventricular remodeling can happen because of certain cardiac

onditions such as myocyte hypertrophy, myocyte apoptosis, my-

fibroblast proliferation, and interstitial fibrosis. In several studies,

uch as in the work by Grayburn et al. [36] , left ventricular remod-

ling has been identified in patients with degenerative mitral re-

urgitation. Under such conditions, the short-axis cut through the

eft ventricle may not have an exactly circular shape. In our simi-

arity metric, the centricity energy works as a regularization term

hat tries to center the segmentation on the LV muscles. In other

ords, like many model-based LV myocardium segmentation algo-

ithms, we assume that LV myocardium in the short-axis view is
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almost (but not necessarily exactly) circular. As reported in the val-

idation section, we tested our cine-to-tagged segmentation map-

ping algorithm on patients suffering from degenerative mitral re-

gurgitation and our results confirm that the proposed algorithm

can be used for these patients as well. 

Both our dataset and the cMac dataset are acquired using 3T

MRI scanners. Although tag fading, lack of visible myocardium bor-

ders and blood circulation artefacts are frequently observed in our

dataset, it is important to evaluate the proposed algorithm on MRI

sequences acquired from 1T and 1.5T scanners to ensure robust-

ness of the proposed algorithm for different types of MRI scanners.

Moreover, we used the TDFFD motion tracking algorithm proposed

by the UPF challenger in cMac 2011 and compared our results

to this challenger’s results. Having both used the same motion

tracking algorithm with the same parameter values, our results

were more similar to the reported strain measurements for healthy

hearts in the literature than the UPF challenger’s results. One can

conclude that the differences result from having a more accu-

rate myocardium segmentation by careful selection of the mesh to

propagate to the other phases. 

Relying on one specific motion tracking algorithm is a limitation

of this work. It is important to see how the registration algorithms

proposed by the other challengers in cMac 2011, such as the work

by Mansi et al. [32] , Knutsson et al. [33] , and Shi et al. [34] , or

the motion tracking methods discussed in [35] perform using the

proposed mesh. 

6. Conclusion 

Myocardial strain analysis is an effective technique for the iden-

tification of nonviable myocardium. This analysis requires accurate

tracking of the myocardium in tagged MR images as well as correct

segmentation of the myocardium during the cardiac cycle. Many

algorithms have been proposed for motion tracking for tagged MRI

sequences. However, correct segmentation of the myocardium dur-

ing the cardiac cycle has not been addressed well. 

This paper introduces an algorithm to leverage the existing cine

MRI segmentation in order to increase accuracy of strain analysis

for tagged MR images by ensuring correct full-cycle segmentation

of the myocardium. The proposed algorithm incorporates a met-

ric that can effectively locate the myocardium in tagged MRI se-

quences and can be used to evaluate a proposed full-cycle segmen-

tation for tagged MR images. The proposed metric relies on three

different features—tag patterns, motion, and edge information from

tagged MR images —and combines them to efficiently differenti-

ate the myocardium from other tissue types. Using the proposed

metric to map cine MRI segmentation on tagged MR images and

to find the deforming mesh with the most accurate full-cycle my-

ocardium segmentation contributed to more accurate segmenta-

tion and regional strain analysis of the left ventricular myocardium

in tagged MR images. 
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